Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 078505    DOI: 10.1088/1674-1056/ab9439

Perpendicular magnetization switching by large spin—orbit torques from sputtered Bi2Te3

Zhenyi Zheng(郑臻益)1,2,3, Yue Zhang(张悦)1, Daoqian Zhu(朱道乾)1, Kun Zhang(张昆)1, Xueqiang Feng(冯学强)1, Yu He(何宇)1, Lei Chen(陈磊)1, Zhizhong Zhang(张志仲)1,2, Dijun Liu(刘迪军)2, Youguang Zhang(张有光)1,2, Pedram Khalili Amiri3, Weisheng Zhao(赵巍胜)1
1 Fert Beijing Research Institute, BDBC, School of Microelectronics, Beihang University, Beijing 100191, China;
2 School of Electronics and Information Engineering, Beihang University, Beijing 100191, China;
3 Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, USA
Abstract  Spin-orbit torque (SOT) effect is considered as an efficient way to switch the magnetization and can inspire various high-performance spintronic devices. Recently, topological insulators (TIs) have gained extensive attention, as they are demonstrated to maintain a large effective spin Hall angle (θSHeff), even at room temperature. However, molecular beam epitaxy (MBE), as a precise deposition method, is required to guarantee favorable surface states of TIs, which hinders the prospect of TIs towards industrial application. In this paper, we demonstrate that Bi2Te3 films grown by magnetron sputtering can provide a notable SOT effect in the heterostructure with perpendicular magnetic anisotropy CoTb ferrimagnetic alloy. By harmonic Hall measurement, a high SOT efficiency (8.7±0.9 Oe/(109 A/m2)) and a large θSHeff (3.3±0.3) are obtained at room temperature. Besides, we also observe an ultra-low critical switching current density (9.7×109 A/m2). Moreover, the low-power characteristic of the sputtered Bi2Te3 film is investigated by drawing a comparison with different sputtered SOT sources. Our work may provide an alternative to leverage chalcogenides as a realistic and efficient SOT source in future spintronic devices.
Keywords:  spin-orbit torque      sputtered topological insulator      ferrimagnet      magnetization switching  
Received:  02 April 2020      Revised:  13 May 2020      Accepted manuscript online: 
PACS:  85.70.-w (Magnetic devices)  
  75.60.Jk (Magnetization reversal mechanisms)  
  75.70.Tj (Spin-orbit effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61971024 and 51901008), Young Elite Scientist Sponsorship Program by CAST (Grant No. 2017QNRC001), the International Mobility Project (Grant No. B16001), and National Key Technology Program of China (Grant No. 2017ZX01032101). P.K.A. acknowledges support by a grant from the National Science Foundation, Division of Electrical, Communications and Cyber Systems (NSF ECCS-1853879).
Corresponding Authors:  Yue Zhang, Weisheng Zhao     E-mail:;

Cite this article: 

Zhenyi Zheng(郑臻益), Yue Zhang(张悦), Daoqian Zhu(朱道乾), Kun Zhang(张昆), Xueqiang Feng(冯学强), Yu He(何宇), Lei Chen(陈磊), Zhizhong Zhang(张志仲), Dijun Liu(刘迪军), Youguang Zhang(张有光), Pedram Khalili Amiri, Weisheng Zhao(赵巍胜) Perpendicular magnetization switching by large spin—orbit torques from sputtered Bi2Te3 2020 Chin. Phys. B 29 078505

[1] Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1
[2] Wadley P, Howells B, Železný J, Andrews C, Hills V, Campion R P, Novák V, Olejník K, Maccherozzi F, Dhesi S S, Martin S Y, Wagner T, Wunderlich J, Freimuth F, Mokrousov Y, Kuneš J, Chauhan J S, Grzybowski M J, Rushforth A W, Edmonds K W, Gallagher B L and Jungwirth T 2016 Science 351 587
[3] Chen X, Zhou X, Cheng R, Song C, Zhang J, Wu Y, Ba Y, Li H, Sun Y, You Y, Zhao Y and Pan F 2019 Nat. Mater. 18 931
[4] Yang T, Kimura T and Otani Y 2008 Nat. Phys. 4 851
[5] Liu L, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555
[6] Miron I M, Garello K, Gaudin G, Zermatten P G, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature 476 189
[7] Yu G, Upadhyaya P, Fan Y, Alzate J G, Jiang W, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M, Tang J, Wang Y, Tserkovnyak Y, Amiri P K and Wang K L 2014 Nat. Nanotechnol. 9 548
[8] Zheng Z, Zhang Y, Feng X, Zhang K, Nan J, Zhang Z, Wang G, Wang J, Lei N, Liu D, Zhang Y G and Zhao W S 2019 Phys. Rev. Appl. 12 044032
[9] Sato N, Xue F, White R M, Bi C and Wang S X 2018 Nat. Electron. 1 508
[10] Zhang Z, Zhu Y, Zhang Y, Zhang K, Nan J, Zheng Z, Zhang Y G and Zhao W S 2019 IEEE Electron. Device. Lett. 40 1984
[11] Zhang K, Zhang Y, Zhang Z, Zheng Z, Wang G, Zhang Y G, Liu Q, Yan S and Zhao W S 2019 Adv. Electron. Mater. 5 1800812
[12] Wang M, Cai W, Zhu D, Wang Z, Kan J, Zhao Z, Cao K, Wang Z, Zhang Y, Zhang T, Park C, Wang J P, Fert A and Zhao W S 2018 Nat. Electron. 1 582
[13] Zheng C, Chen H, Zhang X, Zhang Z and Liu Y 2019 Chin. Phys. B 28 037503
[14] Feng X, Zhang Q, Zhang H, Zhang Y, Zhong R, Lu B, Cao J and Fan X 2019 Chin. Phys. B 28 107105
[15] Ramaswamy R, Qiu X, Dutta T, Pollard S D and Yang H 2016 Appl. Phys. Lett. 108 202406
[16] Finley J, Lee C H, Huang P Y and Liu L 2019 Adv. Mater. 31 1805361
[17] Li P, Liu T, Chang H, Kalitsov A, Zhang W, Csaba G, Li W, Richardson D, DeMann A, Rimal G, Dey H, Jiang J S, Porod W, Field S, Tang J, Marconi M C, Hoffmann A, Mryasov O and Wu M 2016 Nat. Commun. 7 12688
[18] Mellnik A R, Lee J S, Richardella A, Grab J L, Mintun P J, Fischer M H, Vaezi A, Manchon A, Kim E A, Samarth N and Ralph D C 2014 Nature 511 449
[19] Han J, Richardella A, Siddiqui S A, Finley J, Samarth N and Liu L 2017 Phys. Rev. Lett. 119 077702
[20] Wang Y, Zhu D, Wu Y, Yang Y, Yu J, Ramaswamy R, Mishra R, Shi S, Elyasi M, Teo K L, Wu Y and Yang H 2017 Nat. Commun. 8 1
[21] Yang H, Zhang B, Zhang X, Yan X, Cai W, Zhao Y, Sun J, Wang K L, Zhu D and Zhao W S 2019 Phys. Rev. Appl. 12 034004
[22] Ohtomo A and Hwang H Y 2004 Nature 427 423
[23] Kageyama Y, Tazaki Y, An H, Harumoto T, Gao T, Shi J and Ando K 2019 Sci. Adv. 5 eaax4278
[24] An H, Ohno T, Kanno Y, Kageyama Y, Monnai Y, Maki H and Ando K 2018 Sci. Adv. 4 eaar2250
[25] Khang N H D, Ueda Y and Hai P N 2018 Nat. Mater. 17 808
[26] Wu H, Xu Y, Deng P, Pan Q, Razavi S A, Wong K, Huang L, Dai B, Shao Q, Yu G, Han X, Sánchez J C R, Mangin S and Wang K L 2019 Adv. Mater. 31 1901681
[27] Mahendra D C, Grassi R, Chen J, Jamali M, Hickey D R, Zhang D, Zhao Z, Li H, Quarterman P, Lv Y, Li M, Manchon A, Mkhoyan K A, Low T and Wang J P 2018 Nat. Mater 17 800
[28] Zhang X, Cui B, Mao J, Yun J, Yan Z, Chang M, Zuo Y and Xi L 2020 Phys. Status Solidi-Rapid Res. Lett. 14 2000033
[29] Sourabh, B, Rajeev and K P 2014 AIP Adv. 4 017135
[30] Finley J and Liu L 2016 Phys. Rev. Appl. 6 054001
[31] Ueda K, Mann M, de Brouwer P W P, Bono D and Beach G S D 2017 Phys. Rev. B 96 064410
[32] Je S G, Sánchez J C R, Pham T H, Vallobra P, Malinowski G, Lacour D, Fache T, Cyrille M C, Kim D Y, Choe S B, Belmeguenai M, Hehn M, Mangin S, Gaudin G and Boulle O 2018 Appl. Phys. Lett. 112 062401
[33] Woo S, Mann M, Tan A J, Caretta L and Beach G S D 2014 Appl. Phys. Lett. 105 212404
[34] Hayashi M, Kim J, Yamanouchi M and Ohno H 2014 Phys. Rev. B 89 144425
[35] Garello K, Miron I M, Avci C O, Freimuth F, Mokrousov Y, Blügel S, Auffret S, Boulle O, Gaudin G and Gambardella P 2013 Nat. Nanotechnol. 8 587
[36] Zhang S, Su Y, Li X, Li R, Tian W, Hong J and You L 2019 Appl. Phys. Lett. 114 042401
[37] Cao J, Chen Y, Jin T, Gan W, Wang Y, Zheng Y, Lv H, Cardoso S, Wei D and Lew W S 2018 Sci. Rep. 8 1355
[38] Li X, Li P, Hou V D H, Mahendra D C, Nien C H, Xue F, Yi D, Bi C, Lee C M, Lin S J, Tsai W, Suzuki Y and Wang S X 2020 arXiv:2001.04054[cond-mat.mes-hall]
[39] Shi S, Liang S, Zhu Z, Cai K, Pollard S D, Wang Y, Wang J, Wang Q, He P, Yu J, Eda G, Liang G and Yang H 2019 Nat. Nanotechnol. 14 945
[40] Li P, Wu W, Wen Y, Zhang C, Zhang J, Zhang S, Yu Z, Yang S A, Manchon A and Zhang X 2018 Nat. Commun. 9 3990
[1] Orbital torque of Cr-induced magnetization switching in perpendicularly magnetized Pt/Co/Pt/Cr heterostructures
Hongfei Xie(谢宏斐), Yuhan Chang(常宇晗), Xi Guo(郭玺), Jianrong Zhang(张健荣), Baoshan Cui(崔宝山), Yalu Zuo(左亚路), and Li Xi(席力). Chin. Phys. B, 2023, 32(3): 037502.
[2] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[3] Spin current transmission in Co1-xTbx films
Li Wang(王力), Yangtao Su(苏仰涛), Yang Meng(孟洋), Haibin Shi(石海滨), Xinyu Cao(曹昕宇), and Hongwu Zhao(赵宏武). Chin. Phys. B, 2022, 31(2): 027504.
[4] Switching plasticity in compensated ferrimagnetic multilayers for neuromorphic computing
Weihao Li(李伟浩), Xiukai Lan(兰修凯), Xionghua Liu(刘雄华), Enze Zhang(张恩泽), Yongcheng Deng(邓永城), and Kaiyou Wang(王开友). Chin. Phys. B, 2022, 31(11): 117106.
[5] Multiple modes of perpendicular magnetization switching scheme in single spin—orbit torque device
Tong-Xi Liu(刘桐汐), Zhao-Hao Wang(王昭昊), Min Wang(王旻), Chao Wang(王朝), Bi Wu(吴比), Wei-Qiang Liu(刘伟强), and Wei-Sheng Zhao(赵巍胜). Chin. Phys. B, 2022, 31(10): 107501.
[6] Probing the magnetization switching with in-plane magnetic anisotropy through field-modified magnetoresistance measurement
Runrun Hao(郝润润), Kun Zhang(张昆), Yinggang Li(李迎港), Qiang Cao(曹强), Xueying Zhang(张学莹), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2022, 31(1): 017502.
[7] Perpendicular magnetic anisotropy of Pd/Co2MnSi/NiFe2O4/Pd multilayers on F-mica substrates
Qingwang Bai(白青旺), Bin Guo(郭斌), Qin Yin(尹钦), and Shuyun Wang(王书运). Chin. Phys. B, 2022, 31(1): 017501.
[8] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[9] Enhanced spin-orbit torque efficiency in Pt100-xNix alloy based magnetic bilayer
Congli He(何聪丽), Qingqiang Chen(陈庆强), Shipeng Shen(申世鹏), Jinwu Wei(魏晋武), Hongjun Xu(许洪军), Yunchi Zhao(赵云驰), Guoqiang Yu(于国强), and Shouguo Wang(王守国). Chin. Phys. B, 2021, 30(3): 037503.
[10] Field-induced N\'eel vector bi-reorientation of a ferrimagnetic insulator in the vicinity of compensation temperature
Peng Wang(王鹏), Hui Zhao(赵辉), Zhongzhi Luan(栾仲智), Siyu Xia(夏思宇), Tao Feng(丰韬), and Lifan Zhou(周礼繁). Chin. Phys. B, 2021, 30(2): 027501.
[11] Giant interface spin-orbit torque in NiFe/Pt bilayers
Shu-Fa Li(李树发), Tao Zhu(朱涛). Chin. Phys. B, 2020, 29(8): 087102.
[12] Recent progress on excitation and manipulation of spin-waves in spin Hall nano-oscillators
Liyuan Li(李丽媛), Lina Chen(陈丽娜), Ronghua Liu(刘荣华), and Youwei Du(都有为). Chin. Phys. B, 2020, 29(11): 117102.
[13] Magnetization reorientation induced by spin–orbit torque in YIG/Pt bilayers
Ying-Yi Tian(田颖异), Shuan-Hu Wang(王拴虎), Gang Li(李刚), Hao Li(李豪), Shu-Qin Li(李书琴), Yang Zhao(赵阳), Xiao-Min Cui(崔晓敏), Jian-Yuan Wang(王建元), Lv-Kuan Zou(邹吕宽), and Ke-Xin Jin(金克新). Chin. Phys. B, 2020, 29(11): 117504.
[14] A review of current research on spin currents and spin-orbit torques
Xiao-Yu Feng(冯晓玉), Qi-Han Zhang(张琪涵), Han-Wen Zhang(张瀚文), Yi Zhang(张祎), Rui Zhong(钟瑞), Bo-Wen Lu(卢博文), Jiang-Wei Cao(曹江伟), Xiao-Long Fan(范小龙). Chin. Phys. B, 2019, 28(10): 107105.
[15] Magnetism manipulation in ferromagnetic/ferroelectric heterostructures by electric field induced strain
Xiaobin Guo(郭晓斌), Dong Li(李栋), Li Xi(席力). Chin. Phys. B, 2018, 27(9): 097506.
No Suggested Reading articles found!