Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 086201    DOI: 10.1088/1674-1056/ac693f
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Ru thickness-dependent interlayer coupling and ultrahigh FMR frequency in FeCoB/Ru/FeCoB sandwich trilayers

Le Wang(王乐)1,2,†, Zhao-Xuan Jing(荆照轩)1,2,†, Ao-Ran Zhou(周傲然)1,†, and Shan-Dong Li(李山东)1,2,‡
1 College of Physics, Qingdao University, Qingdao 266071, China;
2 College of Electronics and Information, Qingdao University, Qingdao 266071, China
Abstract  The antiferromagnetic (AFM) interlayer coupling effective field in a ferromagnetic/non-magnetic/ferromagnetic (FM/NM/FM) sandwich structure, as a driving force, can dramatically enhance the ferromagnetic resonance (FMR) frequency. Changing the non-magnetic spacer thickness is an effective way to control the interlayer coupling type and intensity, as well as the FMR frequency. In this study, FeCoB/Ru/FeCoB sandwich trilayers with Ru thickness ($t_{\rm Ru}$) ranging from 1 Å to 16 Å are prepared by a compositional gradient sputtering (CGS) method. It is revealed that a stress-induced anisotropy is present in the FeCoB films due to the B composition gradient in the samples. A $t_{\mathrm{Ru}}$-dependent oscillation of interlayer coupling from FM to AFM with two periods is observed. An AFM coupling occurs in a range of $2 {\rm Å} \le t_{\rm Ru} \le 8 {\rm Å}$ and over 16 $\mathrm{Å}$, while an FM coupling is present in a range of $t_{\rm Ru}< 2$ Å and $9 {\rm Å} \le t_{\rm Ru} \le 14.5 Å$. It is interesting that an ultrahigh optical mode (OM) FMR frequency in excess of 20 GHz is obtained in the sample with ${t}_{\mathrm{Ru}}= 2.5 \mathrm{Å}$ under an AFM coupling. The dynamic coupling mechanism in trilayers is simulated, and the corresponding coupling types at different values of $t_{\mathrm{Ru}}$ are verified by Layadi's rigid model. This study provides a controllable way to prepare and investigate the ultrahigh FMR films.
Keywords:  interlayer exchange coupling      optical mode resonance      acoustic mode resonance      component gradient sputtering  
Received:  11 March 2022      Revised:  15 April 2022      Accepted manuscript online:  22 April 2022
PACS:  62.25.Fg (High-frequency properties, responses to resonant or transient (time-dependent) fields)  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
  75.30.Gw (Magnetic anisotropy)  
  71.55.Ak (Metals, semimetals, and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51871127 and 11674187).
Corresponding Authors:  Shan-Dong Li     E-mail:  lishd@qdu.edu.cn

Cite this article: 

Le Wang(王乐), Zhao-Xuan Jing(荆照轩), Ao-Ran Zhou(周傲然), and Shan-Dong Li(李山东) Ru thickness-dependent interlayer coupling and ultrahigh FMR frequency in FeCoB/Ru/FeCoB sandwich trilayers 2022 Chin. Phys. B 31 086201

[1] Heinrich B, Purcell S T, Dutcher, J R, Urquhart K B, Cochran J F and Arrott A S 1988 Phys. Rev. B 38 12879
[2] Baibich M N, Broto J M, Fert A, Nguyen V D F, Petroff F, Etienne P, Creuzet G, Friederich A and Chazelas J 1988 Phys. Rev. Lett. 61 2472
[3] Zhu J G, Zheng Y F and Prinz G A 2000 J. Appl. Phys. 87 6668
[4] Yu C T, Javorek B, Pechan M J and Maat S 2008 J. Appl. Phys. 103 063914
[5] Belmeguenai M, Martin T, Woltersdorf G, Maier M and Bayreuther G 2007 Phys. Rev. B. 76 104414
[6] Worledge D C 2004 Appl. Phys. Lett. 84 2847
[7] Wang C L, Zhang S H, Qiao S Z, Du H L, Liu X M, Sun R C, Chu X M, Miao G X, Dai Y Y, Kang S S, Yan S S and Li S D 2018 Appl. Phys. Lett. 112 192401
[8] McKinnon T, Omelchenko P, Heinrich B and Girt E 2018 J. Appl. Phys. 123 223903
[9] Rezende S M, Chesman C, Lucena M A, de Moura M C, Azevedo A, de Aguiar F M and Parkin S S P 1999 J. Appl. Phys. 85 5892
[10] Strijkers G J, Kohlhepp J T, Swagten H J M and de Jonge W J M 2000 J. Appl. Phys. 87 5452
[11] Kuanr B K, Buchmeier M, Burgler D E and Grunberg P 2002 J. Appl. Phys. 91 7209
[12] Devries J J, Dejonge W J M, Johnson M T, Destegge J A and Reinders A 1994 J. Appl. Phys. 75 6440
[13] Lamy Y and Viala B 2006 IEEE. T. Magn. 42 3332
[14] Nagamine L, Geshev J, Menegotto T, Fernandes A A R, Biondo A and Saitovitch E B 2005 J. Magn. Magn. Mater. 288 205
[15] Martin T, Belmeguenai M, Maier M, Perzlmaier K and Bayreuther G 2007 J. Appl. Phys. 101 09C101
[16] Belmeguenai M, Martin T, Woltersdorf G, Bayreuther G, Baltz V, Suszka A K and Hickey B J 2008 J. Phys:Condens. Matter 20 345206
[17] Liu X M, Nguyen H T, Ding J, Cottam M G and Adeyeye A O 2014 Phys. Rev. B 90 064428
[18] Hashimoto A, Saito S, Omori K, Takashima H, Ueno T and Takahashi M 2006 Appl. Phys. Lett. 89 032511
[19] Gong Y, Cevher Z, Ebrahim M, Lou J, Pettiford C, Sun N X and Ren Y H 2009 J. Appl. Phys. 106 063916
[20] Xia W X, Inoue K, Saito S and Takahashi M 2010 J. Phys. Conf. Ser. 266 012064
[21] Xing X, Liu M, Li S D, Obi O, Lou J, Zhou Z, Chen B and Sun N X 2011 IEEE. T. Magn. 47 3104
[22] Wei Y J, Svedlindh P, Kostylev M, Ranjbar M, Dumas R K and Akerman J 2015 Phys. Rev. B. 92 064418
[23] Li S D, Xue Q, Duh J G, Du H L, Xu J, Wan Y, Li Q and Lu Y G 2014 Sci. Rep-UK 4 7393
[24] Li S D, Li Q, Xu J, Yan S S, Miao G X, Kang S S, Dai Y Y, Jiao J Q and Lü Y G 2016 Adv. Funct. Mater. 26 3738
[25] Li S D, Wang C L, Chu X M, Miao G X, Xue Q, Zou W Q, Liu M M, Xu J, Li Q, Dai Y Y, Yan S S, Kang S S, Long Y Z and Lu Y G 2016 Sci. Rep-UK 6 33349
[26] Li S D, Miao G X, Cao D R, Li Q, Xu J, Wen Z, Da Y Y, Yan S S and Lü Y G 2018 ACS. Appl. Mater. Interf. 10 8853
[27] Zhang S H, Lin J X, Miao G X, Li S D, Zhao G X, Wang X, Li Q, Cao D R, Xu J, Yan S S and Lü Y G 2019 ACS. Appl. Mater. Interf. 11 48230
[28] Zhou A R, Li Y Z, Zhang S H, Huang Y C, Xue Q, Wang L, Zhao G X, Cao D R, Xu J, Jin Z J, Zong W H, Wang X, Li S D and Miao G X 2022 J. Alloys Compd. 901 163475
[29] Adams D J, Khan M A, Poudyal P and Spinu L 2017 AIP Adv. 7 056322
[30] Xue D S, Li F S, Fan X L and Wen F S 2008 Chin. Phys. Lett. 25 4120
[31] Wang C L, Zhang S H, Li S D, Zhao G X and Cao D R 2020 Chin. Phys. B 29 046202
[32] Li Y, Jin X J, Pan P F, Tan F N, Lew W S and Ma F S 2018 Chin. Phys. B 27 127502
[33] Li S D, Cai Z Y, Xu J, Cao X Q, Du H L, Xue Q and Gao X Y 2014 Chin. Phys. B 23 106201
[34] Cao X Q, Li S D, Cai Z Y, Du H L, Xue Q, Gao X Y and Xie S M 2014 Chin. Phys. B 23 086201
[35] Daboo C, Bland J A C, Hicken R J, Ives A J R, Baird M J and Walker M J 1993 Phys. Rev. B 47 11852
[36] Grünberg P, Schreiber R, Pang Y, Brodsky M B and Sowers H 1986 Phys. Rev. Lett. 57 2442
[37] Zhou L, Zhang Z, Wigen P E and Ounadjela K 1994 J. Appl. Phys. 76 7078
[38] Neel L 1962 Comp. Rend. Acad. Sci. 255 1545
[39] Zhang Z, Zhou L, Wigen P E and Ounadjela K 1994 Phys. Rev. B 50 6094
[40] Li S D, Huang Z G, Duh J G and Yamaguchi M 2008 Appl. Phys. Lett. 92 092501
[41] Li S D, Wang L L, Xu J, Wang Z, Liu M, Lou J, Beguhn S, Nan T X, Xu F, Sun N X and Duh J G 2012 IEEE Trans. Magn. 48 4313
[42] Li S D, Du H L, Xue Q, Xie S M, Liu M, Shao W Q, Xu J, Nan T X, Sun N X and Duh J G 2013 J. Appl. Phys. 113 17A332
[43] Layadi A 1998 J. Appl. Phys. 83 3738
[44] Layadi A 2002 Phys. Rev. B 65 104422
[45] Layadi A 2005 Phys. Rev. B 72 024444
[46] Layadi A 2001 Phys. Rev. B 63 174410
[1] Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer
Zi-Bo Zhang(张子博) and Yong Hu(胡勇). Chin. Phys. B, 2021, 30(7): 077503.
[2] Temperature-dependent interlayer exchange coupling strength in synthetic antiferromagnetic[Pt/Co]2/Ru/[Co/Pt]4 multilayers
Yong Li(李勇), Xiangjun Jin(金香君), Pengfei Pan(潘鹏飞), Fu Nan Tan, Wen Siang Lew, Fusheng Ma(马付胜). Chin. Phys. B, 2018, 27(12): 127502.
[3] Magnon energy gap in a four-layer ferromagnetic superlattice
Qiu Rong-Ke(邱荣科), Song Pan-Pan(宋攀攀), Zhang Zhi-Dong(张志东), and Guo Lian-Quan(郭连权). Chin. Phys. B, 2008, 17(10): 3894-3901.
No Suggested Reading articles found!