CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Ru thickness-dependent interlayer coupling and ultrahigh FMR frequency in FeCoB/Ru/FeCoB sandwich trilayers |
Le Wang(王乐)1,2,†, Zhao-Xuan Jing(荆照轩)1,2,†, Ao-Ran Zhou(周傲然)1,†, and Shan-Dong Li(李山东)1,2,‡ |
1 College of Physics, Qingdao University, Qingdao 266071, China; 2 College of Electronics and Information, Qingdao University, Qingdao 266071, China |
|
|
Abstract The antiferromagnetic (AFM) interlayer coupling effective field in a ferromagnetic/non-magnetic/ferromagnetic (FM/NM/FM) sandwich structure, as a driving force, can dramatically enhance the ferromagnetic resonance (FMR) frequency. Changing the non-magnetic spacer thickness is an effective way to control the interlayer coupling type and intensity, as well as the FMR frequency. In this study, FeCoB/Ru/FeCoB sandwich trilayers with Ru thickness ($t_{\rm Ru}$) ranging from 1 Å to 16 Å are prepared by a compositional gradient sputtering (CGS) method. It is revealed that a stress-induced anisotropy is present in the FeCoB films due to the B composition gradient in the samples. A $t_{\mathrm{Ru}}$-dependent oscillation of interlayer coupling from FM to AFM with two periods is observed. An AFM coupling occurs in a range of $2 {\rm Å} \le t_{\rm Ru} \le 8 {\rm Å}$ and over 16 $\mathrm{Å}$, while an FM coupling is present in a range of $t_{\rm Ru}< 2$ Å and $9 {\rm Å} \le t_{\rm Ru} \le 14.5 Å$. It is interesting that an ultrahigh optical mode (OM) FMR frequency in excess of 20 GHz is obtained in the sample with ${t}_{\mathrm{Ru}}= 2.5 \mathrm{Å}$ under an AFM coupling. The dynamic coupling mechanism in trilayers is simulated, and the corresponding coupling types at different values of $t_{\mathrm{Ru}}$ are verified by Layadi's rigid model. This study provides a controllable way to prepare and investigate the ultrahigh FMR films.
|
Received: 11 March 2022
Revised: 15 April 2022
Accepted manuscript online: 22 April 2022
|
PACS:
|
62.25.Fg
|
(High-frequency properties, responses to resonant or transient (time-dependent) fields)
|
|
75.70.-i
|
(Magnetic properties of thin films, surfaces, and interfaces)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
71.55.Ak
|
(Metals, semimetals, and alloys)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51871127 and 11674187). |
Corresponding Authors:
Shan-Dong Li
E-mail: lishd@qdu.edu.cn
|
Cite this article:
Le Wang(王乐), Zhao-Xuan Jing(荆照轩), Ao-Ran Zhou(周傲然), and Shan-Dong Li(李山东) Ru thickness-dependent interlayer coupling and ultrahigh FMR frequency in FeCoB/Ru/FeCoB sandwich trilayers 2022 Chin. Phys. B 31 086201
|
[1] Heinrich B, Purcell S T, Dutcher, J R, Urquhart K B, Cochran J F and Arrott A S 1988 Phys. Rev. B 38 12879 [2] Baibich M N, Broto J M, Fert A, Nguyen V D F, Petroff F, Etienne P, Creuzet G, Friederich A and Chazelas J 1988 Phys. Rev. Lett. 61 2472 [3] Zhu J G, Zheng Y F and Prinz G A 2000 J. Appl. Phys. 87 6668 [4] Yu C T, Javorek B, Pechan M J and Maat S 2008 J. Appl. Phys. 103 063914 [5] Belmeguenai M, Martin T, Woltersdorf G, Maier M and Bayreuther G 2007 Phys. Rev. B. 76 104414 [6] Worledge D C 2004 Appl. Phys. Lett. 84 2847 [7] Wang C L, Zhang S H, Qiao S Z, Du H L, Liu X M, Sun R C, Chu X M, Miao G X, Dai Y Y, Kang S S, Yan S S and Li S D 2018 Appl. Phys. Lett. 112 192401 [8] McKinnon T, Omelchenko P, Heinrich B and Girt E 2018 J. Appl. Phys. 123 223903 [9] Rezende S M, Chesman C, Lucena M A, de Moura M C, Azevedo A, de Aguiar F M and Parkin S S P 1999 J. Appl. Phys. 85 5892 [10] Strijkers G J, Kohlhepp J T, Swagten H J M and de Jonge W J M 2000 J. Appl. Phys. 87 5452 [11] Kuanr B K, Buchmeier M, Burgler D E and Grunberg P 2002 J. Appl. Phys. 91 7209 [12] Devries J J, Dejonge W J M, Johnson M T, Destegge J A and Reinders A 1994 J. Appl. Phys. 75 6440 [13] Lamy Y and Viala B 2006 IEEE. T. Magn. 42 3332 [14] Nagamine L, Geshev J, Menegotto T, Fernandes A A R, Biondo A and Saitovitch E B 2005 J. Magn. Magn. Mater. 288 205 [15] Martin T, Belmeguenai M, Maier M, Perzlmaier K and Bayreuther G 2007 J. Appl. Phys. 101 09C101 [16] Belmeguenai M, Martin T, Woltersdorf G, Bayreuther G, Baltz V, Suszka A K and Hickey B J 2008 J. Phys:Condens. Matter 20 345206 [17] Liu X M, Nguyen H T, Ding J, Cottam M G and Adeyeye A O 2014 Phys. Rev. B 90 064428 [18] Hashimoto A, Saito S, Omori K, Takashima H, Ueno T and Takahashi M 2006 Appl. Phys. Lett. 89 032511 [19] Gong Y, Cevher Z, Ebrahim M, Lou J, Pettiford C, Sun N X and Ren Y H 2009 J. Appl. Phys. 106 063916 [20] Xia W X, Inoue K, Saito S and Takahashi M 2010 J. Phys. Conf. Ser. 266 012064 [21] Xing X, Liu M, Li S D, Obi O, Lou J, Zhou Z, Chen B and Sun N X 2011 IEEE. T. Magn. 47 3104 [22] Wei Y J, Svedlindh P, Kostylev M, Ranjbar M, Dumas R K and Akerman J 2015 Phys. Rev. B. 92 064418 [23] Li S D, Xue Q, Duh J G, Du H L, Xu J, Wan Y, Li Q and Lu Y G 2014 Sci. Rep-UK 4 7393 [24] Li S D, Li Q, Xu J, Yan S S, Miao G X, Kang S S, Dai Y Y, Jiao J Q and Lü Y G 2016 Adv. Funct. Mater. 26 3738 [25] Li S D, Wang C L, Chu X M, Miao G X, Xue Q, Zou W Q, Liu M M, Xu J, Li Q, Dai Y Y, Yan S S, Kang S S, Long Y Z and Lu Y G 2016 Sci. Rep-UK 6 33349 [26] Li S D, Miao G X, Cao D R, Li Q, Xu J, Wen Z, Da Y Y, Yan S S and Lü Y G 2018 ACS. Appl. Mater. Interf. 10 8853 [27] Zhang S H, Lin J X, Miao G X, Li S D, Zhao G X, Wang X, Li Q, Cao D R, Xu J, Yan S S and Lü Y G 2019 ACS. Appl. Mater. Interf. 11 48230 [28] Zhou A R, Li Y Z, Zhang S H, Huang Y C, Xue Q, Wang L, Zhao G X, Cao D R, Xu J, Jin Z J, Zong W H, Wang X, Li S D and Miao G X 2022 J. Alloys Compd. 901 163475 [29] Adams D J, Khan M A, Poudyal P and Spinu L 2017 AIP Adv. 7 056322 [30] Xue D S, Li F S, Fan X L and Wen F S 2008 Chin. Phys. Lett. 25 4120 [31] Wang C L, Zhang S H, Li S D, Zhao G X and Cao D R 2020 Chin. Phys. B 29 046202 [32] Li Y, Jin X J, Pan P F, Tan F N, Lew W S and Ma F S 2018 Chin. Phys. B 27 127502 [33] Li S D, Cai Z Y, Xu J, Cao X Q, Du H L, Xue Q and Gao X Y 2014 Chin. Phys. B 23 106201 [34] Cao X Q, Li S D, Cai Z Y, Du H L, Xue Q, Gao X Y and Xie S M 2014 Chin. Phys. B 23 086201 [35] Daboo C, Bland J A C, Hicken R J, Ives A J R, Baird M J and Walker M J 1993 Phys. Rev. B 47 11852 [36] Grünberg P, Schreiber R, Pang Y, Brodsky M B and Sowers H 1986 Phys. Rev. Lett. 57 2442 [37] Zhou L, Zhang Z, Wigen P E and Ounadjela K 1994 J. Appl. Phys. 76 7078 [38] Neel L 1962 Comp. Rend. Acad. Sci. 255 1545 [39] Zhang Z, Zhou L, Wigen P E and Ounadjela K 1994 Phys. Rev. B 50 6094 [40] Li S D, Huang Z G, Duh J G and Yamaguchi M 2008 Appl. Phys. Lett. 92 092501 [41] Li S D, Wang L L, Xu J, Wang Z, Liu M, Lou J, Beguhn S, Nan T X, Xu F, Sun N X and Duh J G 2012 IEEE Trans. Magn. 48 4313 [42] Li S D, Du H L, Xue Q, Xie S M, Liu M, Shao W Q, Xu J, Nan T X, Sun N X and Duh J G 2013 J. Appl. Phys. 113 17A332 [43] Layadi A 1998 J. Appl. Phys. 83 3738 [44] Layadi A 2002 Phys. Rev. B 65 104422 [45] Layadi A 2005 Phys. Rev. B 72 024444 [46] Layadi A 2001 Phys. Rev. B 63 174410 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|