Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 107507    DOI: 10.1088/1674-1056/acee57
RAPID COMMUNICATION Prev   Next  

Spin-orbit torque in perpendicularly magnetized [Pt/Ni] multilayers

Ying Cao(曹颖)1,2, Zhicheng Xie(谢志成)1,2, Zhiyuan Zhao(赵治源)1,2, Yumin Yang(杨雨民)1,2, Na Lei(雷娜)3,†, Bingfeng Miao(缪冰锋)4, and Dahai Wei(魏大海)1,2,‡
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Fert Beijing Institute, MIIT Key Laboratory of Spintronics, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China;
4 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
Abstract  The performance of spin-orbit torque (SOT) in heavy metal/ferromagnetic metal periodic multilayers has attracted widespread attention. In this paper, we have successfully fabricated a series of perpendicular magnetized [Pt($2-t$)/Ni($t$)]$_{4}$ multilayers, and studied the SOT in the multilayers by varying the thickness of Ni layer $t$. The current induced magnetization switching was achieved with a critical current density of 1$\times10^{7}$ A/cm$^{2}$. The damping-like SOT efficiency $\xi_{\rm DL}$ was extracted from an extended harmonic Hall measurement. We demonstrated that the $\xi_{\rm DL}$ can be effectively modulated by $t_{\mathrm{Pt}}/t_{\mathrm{Ni}}$ ratio of Pt and Ni in the multilayers. The SOT investigation about the [Pt/Ni]$_{N}$ multilayers might provide new material candidates for practical perpendicular SOT-MRAM devices.
Keywords:  spin-orbit torque      perpendicular magnetic anisotropy      spintronics  
Received:  25 June 2023      Revised:  19 July 2023      Accepted manuscript online:  09 August 2023
PACS:  75.70.Tj (Spin-orbit effects)  
  75.30.Gw (Magnetic anisotropy)  
  75.50.Ss (Magnetic recording materials)  
  72.25.Ba (Spin polarized transport in metals)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2021YFB3502400), the National Natural Science Foundation of China (Grant Nos. 52061135105, 12074025, 11834013, and 12274203), the CAS Project for Yong Scientists in Basic Research (Grant No. YSBR-030), and the Key Research Project of Frontier Science of Chinese Academy of Sciences (Grant Nos. XDB44000000 and XDB28000000).
Corresponding Authors:  Na Lei, Dahai Wei     E-mail:  na.lei@buaa.edu.cn;dhwei@buaa.edu.cn

Cite this article: 

Ying Cao(曹颖), Zhicheng Xie(谢志成), Zhiyuan Zhao(赵治源), Yumin Yang(杨雨民), Na Lei(雷娜), Bingfeng Miao(缪冰锋), and Dahai Wei(魏大海) Spin-orbit torque in perpendicularly magnetized [Pt/Ni] multilayers 2023 Chin. Phys. B 32 107507

[1] Shao Q M, Wang Z R and Yang J J 2022 Nat. Electron. 5 67
[2] Wang J, Bai Y, Wang H, et al. 2022 IEEE Transactions on Circuits and Systems I: Regular Papers 69 4535
[3] Ikegawa S, Mancoff F B, Janesky J and Aggarwal S 2020 IEEE T. Electron Dev. 67 1407
[4] Zhu J G J and Park C 2006 Materials today 9 36
[5] Ando Y 2015 Jpn. J. Appl. Phys. 54 070101
[6] Apalkov D, Dieny B and Slaughter J M 2016 Proc. IEEE 104 1796
[7] Lee S W and Lee K J 2016 Proc. IEEE 104 1831
[8] Meng T, Ka S J and Shijie X 2020 Adv. Mater. 32 2002607
[9] Yu J, Qiu X, Wu Y, et al. 2016 Sci. Rep. 6 32629
[10] Zhang C, Takeuchi Y, Fukami S and Ohno H 2021 Appl. Phys. Lett. 118 092406
[11] Safranski C, Sun J A T Z and Kent A D 2022 Appl. Phys. Lett. 120 160502
[12] Lang L, Jiang Y, Lu F, et al. 2020 Appl. Phys. Lett. 116 022409
[13] Liu T, Cai J W and Sun L 2012 AIP Advances 2 032151
[14] Ikeda S, Miura K, Yamamoto H, et al. 2010 Nat. Mater. 9 721
[15] Xu Y, Chen D, Tong S, et al. 2020 Phys. Rev. Applied 14 034064
[16] Chen D, Xu Y, Tong S, et al. 2022 Phys. Rev. Materials 6 014402
[17] Takahashi Y K, Ohnuma M and Hono K 2001 Jpn. J. Appl. Phys. 40 L1367
[18] Meng K K, Miao J, Xu X G, et al. 2016 Phys. Rev. B 94 214413
[19] Liu L, Zhou C, Zhao T, et al. 2022 Nat. Commun. 13 3539
[20] Nemoto H and Hosoe Y 2005 J. Appl. Phys. 97 10J109
[21] Kamzin A S, Wei F L, Ganeev V R, et al. 2014 Tech. Phys. 59 452
[22] Shin S C, Srinivas G, Kim Y S and Kim M G 1998 Appl. Phys. Lett. 73 393
[23] Seki T, Tsujikawa M, Ito K, et al. 2020 Phys. Rev. Materials 4 064413
[24] Zhou H, Wang C, Li Z, et al. 2020 AIP Advances 10 015317
[25] Vedmedenko E Y, Kawakami R K, Sheka D D, et al. 2020 J. Phys. D: Appl. Phys. 53 453001
[26] Ramaswamy R, Lee J M, Cai K M and Yang H 2018 Appl. Phys. Rev. 5 031107
[27] Golod T, Rydh A and Krasnov V M 2011 J. Appl. Phys. 110 033909
[28] Xue F, Lin S J, Dc M, et al. 2021 Appl. Phys. Lett. 118 042405
[29] Zhu L, Ralph D C and Buhrman R A 2021 Appl. Phys. Rev. 8 031308
[30] Liu T X, Wang Z H, Wang M, et al. 2022 Chin. Phys. B 31 107501
[31] Kim S, Jang P H, Kim D H, et al. 2017 Phys. Rev. B 95 220402
[32] Zhang H C, Ma X Y, Jiang C P, et al. 2022 J. Semicond 43 102501
[33] Martini M, Avci C O, Tacchi S, et al. 2022 Phys. Rev. Appl. 17 044056
[34] Zhu L, Zhu L and Buhrman R A 2021 Phys. Rev. Lett. 126 107204
[35] Hayashi H, Musha A, Sakimura H and Ando K 2021 Phys. Rev. Res. 3 013042
[36] Chen L N, Zhan X, Zhou K Y, et al. 2022 Phys. Rev. Appl. 17 064041
[37] Huang K F, Wang D S, Lin H H and Lai C H 2015 Appl. Phys. Lett. 107 232407
[1] Electric-field control of perpendicular magnetic anisotropy by resistive switching via electrochemical metallization
Yuan Yuan(袁源), Lu-Jun Wei(魏陆军), Yu Lu(卢羽), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Jia-Rui Chen(陈家瑞), Biao You(游彪), Wei Zhang(张维), Di Wu(吴镝), and Jun Du(杜军). Chin. Phys. B, 2023, 32(6): 067505.
[2] Topological magnetotransport and electrical switching of sputtered antiferromagnetic Ir20Mn80
Danrong Xiong(熊丹荣), Yuhao Jiang(蒋宇昊), Daoqian Zhu(朱道乾), Ao Du(杜奥), Zongxia Guo(郭宗夏), Shiyang Lu(卢世阳), Chunxu Wang(王春旭), Qingtao Xia(夏清涛), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2023, 32(5): 057501.
[3] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[4] Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet
Tao Lin(蔺涛), Chengxiang Wang(王承祥), Zhiyong Qiu(邱志勇), Chao Chen(陈超), Tao Xing(邢弢), Lu Sun(孙璐), Jianhui Liang(梁建辉), Yizheng Wu(吴义政), Zhong Shi(时钟), and Na Lei(雷娜). Chin. Phys. B, 2023, 32(2): 027505.
[5] Perspectives of spin-valley locking devices
Lingling Tao(陶玲玲). Chin. Phys. B, 2023, 32(10): 107306.
[6] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[7] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[8] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[9] Current spin polarization of a platform molecule with compression effect
Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2022, 31(7): 077202.
[10] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[11] Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国), Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦). Chin. Phys. B, 2022, 31(3): 038502.
[12] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[13] Switching plasticity in compensated ferrimagnetic multilayers for neuromorphic computing
Weihao Li(李伟浩), Xiukai Lan(兰修凯), Xionghua Liu(刘雄华), Enze Zhang(张恩泽), Yongcheng Deng(邓永城), and Kaiyou Wang(王开友). Chin. Phys. B, 2022, 31(11): 117106.
[14] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
[15] Perpendicular magnetic anisotropy of Pd/Co2MnSi/NiFe2O4/Pd multilayers on F-mica substrates
Qingwang Bai(白青旺), Bin Guo(郭斌), Qin Yin(尹钦), and Shuyun Wang(王书运). Chin. Phys. B, 2022, 31(1): 017501.
No Suggested Reading articles found!