|
|
|
Strain tuning of the transport gap and magnetic order in Dirac fermion systems |
| Jingyao Meng(孟敬尧)1,†, Zenghui Fan(范增辉)1,†, Miao Ye(叶苗)2, and Tianxing Ma(马天星)1,3,‡ |
1 School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China; 2 Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China; 3 Key Laboratory of Multiscale Spin Physics (Ministry of Education), Beijing Normal University, Beijing 100875, China |
|
|
|
|
Abstract Using the determinant quantum Monte Carlo method, we explore a rich phase diagram featuring strain-induced metal-insulator and magnetic phase transitions in an interacting two-dimensional Dirac fermion system. Asymmetric strain applied along the zigzag crystal direction drives the semimetallic regime into a band-insulating phase, or it breaks the antiferromagnetic order of the Mott insulator, inducing a nonmagnetic insulating phase under strong correlations. The critical strain required for band gap opening or for a transport phase transition is significantly reduced in the presence of Coulomb repulsion, while increasing interaction strength makes it more difficult for strain to induce a nonmagnetic phase transition. In addition, we measure in detail the band gap modulation by strain and identify a doping effect whereby doping inhibits band gap opening. Our results provide an effective way to tune the transport gap, which could help extend the applications of graphene, whose zero band gap currently limits its use.
|
Received: 13 June 2025
Revised: 19 June 2025
Accepted manuscript online: 01 July 2025
|
|
PACS:
|
81.05.ue
|
(Graphene)
|
| |
71.10.Fd
|
(Lattice fermion models (Hubbard model, etc.))
|
| |
68.35.Gy
|
(Mechanical properties; surface strains)
|
|
| Fund: This project was supported by the National Natural Science Foundation of China (Grant No. 12474218), the Beijing Natural Science Foundation (Grant No. 1242022), and the Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology (Grant No. DH202322). |
Corresponding Authors:
Tianxing Ma
E-mail: txma@bnu.edu.cn
|
Cite this article:
Jingyao Meng(孟敬尧), Zenghui Fan(范增辉), Miao Ye(叶苗), and Tianxing Ma(马天星) Strain tuning of the transport gap and magnetic order in Dirac fermion systems 2025 Chin. Phys. B 34 098101
|
[1] Schwierz F 2010 Nat. Nanotechnol. 5 487 [2] Sun M, Wang S, Liang Y, Wang C, Zhang Y, Liu H, Zhang Y and Han L 2025 Nano-Micro Lett. 17 24 [3] Wang H, Li Z, Li D, Chen P, Pi L, Zhou X and Zhai T 2021 Adv. Funct. Mater. 31 2103106 [4] Jhang A T, Tsai P C, Tsai Y T, Lin S Y and Fang M H 2024 Adv. Opt. Mater. 12 2401252 [5] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [6] Andrei E Y and MacDonald A H 2020 Nat. Mater. 19 1265 [7] Zheng Q, Hao C Y, Zhou X F, Zhao Y X, He J Q and He L 2022 Phys. Rev. Lett. 129 076803 [8] Chu Y, Zhu F, Wen L, Chen W, Chen Q and Ma T 2020 Chin. Phys. B 29 117401 [9] Cao Y, Rodan-Legrain D, Park J M, Yuan N F Q, Watanabe K, Taniguchi T, Fernandes R M, Fu L and Jarillo-Herrero P 2021 Science 372 264 [10] Lian B, Wang Z and Bernevig B A 2019 Phys. Rev. Lett. 122 257002 [11] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez- Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80 [12] Dong K, Zhang T, Li J, Wang Q, Yang F, Rho Y, Wang D, Grigoropoulos C P, Wu J and Yao J 2021 Phys. Rev. Lett. 126 223601 [13] Zhang S, Dai X and Liu J 2022 Phys. Rev. Lett. 128 026403 [14] Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385 [15] Si C, Sun Z and Liu F 2016 Nanoscale 8 3207 [16] Manesco A L R and Lado J L 2021 2D Mater. 8 035057 [17] Mao J, Milovanović S P, Andelković M, Lai X, Cao Y, Watanabe K, Taniguchi T, Covaci L, Peeters F M, Geim A K, Jiang Y and Andrei E Y 2020 Nature 584 215 [18] Li B, Cao Y, Xu L, Yang G, Ma Z, Ye M and Ma T 2019 Chin. Phys. Lett. 36 067503 [19] Wang L, Makk P, Zihlmann S, Baumgartner A, Indolese D I,Watanabe K, Taniguchi T and Schönenberger C 2020 Phys. Rev. Lett. 124 157701 [20] Carvalho Fernandes D C, Lynch D and Berry V 2020 Sci. Rep. 10 11373 [21] Lee S H, Kim S and Kim K 2012 Phys. Rev. B 86 155436 [22] Tang H K, Laksono E, Rodrigues J N B, Sengupta P, Assaad F F and Adam S 2015 Phys. Rev. Lett. 115 186602 [23] Sorella S, Seki K, Brovko O O, Shirakawa T, Miyakoshi S, Yunoki S and Tosatti E 2018 Phys. Rev. Lett. 121 066402 [24] Poszwa A 2022 Sci. Rep. 12 9908 [25] Ildarabadi F and Farghadan R 2021 Phys. Rev. B 103 115424 [26] White S R, Scalapino D J, Sugar R L, Loh E Y, Gubernatis J E and Scalettar R T 1989 Phys. Rev. B 40 506 [27] Ma T, Zhang L, Chang C C, Hung H H and Scalettar R T 2018 Phys. Rev. Lett. 120 116601 [28] Paiva T, Khatami E, Yang S, Rousseau V, Jarrell M, Moreno J, Hulet R G and Scalettar R T 2015 Phys. Rev. Lett. 115 240402 [29] Zhang L, Ma C and Ma T 2021 Phys. Status Solidi RRL 15 2100287 [30] Cheng S, Yu J, Ma T and Peres N M R 2015 Phys. Rev. B 91 075410 [31] Gloor T and Mila F 2004 Eur. Phys. J. B 38 9 [32] Herbut I F 2006 Phys. Rev. Lett. 97 146401 [33] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 [34] Wehling T O, Ş aşıoǧlu E, Friedrich C, Lichtenstein A I, KatsnelsonMI and Blügel S 2011 Phys. Rev. Lett. 106 236805 [35] Ma T, Hu F, Huang Z and Lin H Q 2010 Appl. Phys. Lett. 97 112504 [36] Quan S, Zhang Y and Chen W 2022 Phys. Chem. Chem. Phys. 24 23929 [37] Reich S, Maultzsch J, Thomsen C and Ordejón P 2002 Phys. Rev. B 66 035412 [38] Torres V, Silva P, de Souza E A T, Silva L A and Bahamon D A 2019 Phys. Rev. B 100 205411 [39] Chang Y, Albash T and Haas S 2012 Phys. Rev. B 86 125402 [40] Huang E W, Sheppard R, Moritz B and Devereaux T P 2019 Science 366 987 [41] Scalettar R T, Trivedi N and Huscroft C 1999 Phys. Rev. B 59 4364 [42] Trivedi N and Randeria M 1995 Phys. Rev. Lett. 75 312 [43] Lederer S, Schattner Y, Berg E and Kivelson S A 2017 Proc. Natl. Acad. Sci. USA 114 4905 [44] Antipov A E, Javanmard Y, Ribeiro P and Kirchner S 2016 Phys. Rev. Lett. 117 146601 [45] Paiva T, Scalettar R T, ZhengW, Singh R R P and Oitmaa J 2005 Phys. Rev. B 72 085123 [46] Sorella S and Tosatti E 1992 Europhys. Lett. 19 699 [47] Martelo L M, Dzierzawa M, Siffert L and Baeriswyl D 1996 Z. Phys. B 103 335 [48] Furukawa N 2001 J. Phys. Soc. Jpn. 70 1483 [49] Meng Z Y, Lang T C, Wessel S, Assaad F F and Muramatsu A 2010 Nature 464 847 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|