Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 098101    DOI: 10.1088/1674-1056/adea5e
RAPID COMMUNICATION Prev   Next  

Strain tuning of the transport gap and magnetic order in Dirac fermion systems

Jingyao Meng(孟敬尧)1,†, Zenghui Fan(范增辉)1,†, Miao Ye(叶苗)2, and Tianxing Ma(马天星)1,3,‡
1 School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China;
2 Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China;
3 Key Laboratory of Multiscale Spin Physics (Ministry of Education), Beijing Normal University, Beijing 100875, China
Abstract  Using the determinant quantum Monte Carlo method, we explore a rich phase diagram featuring strain-induced metal-insulator and magnetic phase transitions in an interacting two-dimensional Dirac fermion system. Asymmetric strain applied along the zigzag crystal direction drives the semimetallic regime into a band-insulating phase, or it breaks the antiferromagnetic order of the Mott insulator, inducing a nonmagnetic insulating phase under strong correlations. The critical strain required for band gap opening or for a transport phase transition is significantly reduced in the presence of Coulomb repulsion, while increasing interaction strength makes it more difficult for strain to induce a nonmagnetic phase transition. In addition, we measure in detail the band gap modulation by strain and identify a doping effect whereby doping inhibits band gap opening. Our results provide an effective way to tune the transport gap, which could help extend the applications of graphene, whose zero band gap currently limits its use.
Keywords:  strained graphene      Hubbard model      metal-insulator transition      magnetism  
Received:  13 June 2025      Revised:  19 June 2025      Accepted manuscript online:  01 July 2025
PACS:  81.05.ue (Graphene)  
  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
  68.35.Gy (Mechanical properties; surface strains)  
Fund: This project was supported by the National Natural Science Foundation of China (Grant No. 12474218), the Beijing Natural Science Foundation (Grant No. 1242022), and the Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology (Grant No. DH202322).
Corresponding Authors:  Tianxing Ma     E-mail:  txma@bnu.edu.cn

Cite this article: 

Jingyao Meng(孟敬尧), Zenghui Fan(范增辉), Miao Ye(叶苗), and Tianxing Ma(马天星) Strain tuning of the transport gap and magnetic order in Dirac fermion systems 2025 Chin. Phys. B 34 098101

[1] Schwierz F 2010 Nat. Nanotechnol. 5 487
[2] Sun M, Wang S, Liang Y, Wang C, Zhang Y, Liu H, Zhang Y and Han L 2025 Nano-Micro Lett. 17 24
[3] Wang H, Li Z, Li D, Chen P, Pi L, Zhou X and Zhai T 2021 Adv. Funct. Mater. 31 2103106
[4] Jhang A T, Tsai P C, Tsai Y T, Lin S Y and Fang M H 2024 Adv. Opt. Mater. 12 2401252
[5] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[6] Andrei E Y and MacDonald A H 2020 Nat. Mater. 19 1265
[7] Zheng Q, Hao C Y, Zhou X F, Zhao Y X, He J Q and He L 2022 Phys. Rev. Lett. 129 076803
[8] Chu Y, Zhu F, Wen L, Chen W, Chen Q and Ma T 2020 Chin. Phys. B 29 117401
[9] Cao Y, Rodan-Legrain D, Park J M, Yuan N F Q, Watanabe K, Taniguchi T, Fernandes R M, Fu L and Jarillo-Herrero P 2021 Science 372 264
[10] Lian B, Wang Z and Bernevig B A 2019 Phys. Rev. Lett. 122 257002
[11] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez- Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80
[12] Dong K, Zhang T, Li J, Wang Q, Yang F, Rho Y, Wang D, Grigoropoulos C P, Wu J and Yao J 2021 Phys. Rev. Lett. 126 223601
[13] Zhang S, Dai X and Liu J 2022 Phys. Rev. Lett. 128 026403
[14] Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385
[15] Si C, Sun Z and Liu F 2016 Nanoscale 8 3207
[16] Manesco A L R and Lado J L 2021 2D Mater. 8 035057
[17] Mao J, Milovanović S P, Andelković M, Lai X, Cao Y, Watanabe K, Taniguchi T, Covaci L, Peeters F M, Geim A K, Jiang Y and Andrei E Y 2020 Nature 584 215
[18] Li B, Cao Y, Xu L, Yang G, Ma Z, Ye M and Ma T 2019 Chin. Phys. Lett. 36 067503
[19] Wang L, Makk P, Zihlmann S, Baumgartner A, Indolese D I,Watanabe K, Taniguchi T and Schönenberger C 2020 Phys. Rev. Lett. 124 157701
[20] Carvalho Fernandes D C, Lynch D and Berry V 2020 Sci. Rep. 10 11373
[21] Lee S H, Kim S and Kim K 2012 Phys. Rev. B 86 155436
[22] Tang H K, Laksono E, Rodrigues J N B, Sengupta P, Assaad F F and Adam S 2015 Phys. Rev. Lett. 115 186602
[23] Sorella S, Seki K, Brovko O O, Shirakawa T, Miyakoshi S, Yunoki S and Tosatti E 2018 Phys. Rev. Lett. 121 066402
[24] Poszwa A 2022 Sci. Rep. 12 9908
[25] Ildarabadi F and Farghadan R 2021 Phys. Rev. B 103 115424
[26] White S R, Scalapino D J, Sugar R L, Loh E Y, Gubernatis J E and Scalettar R T 1989 Phys. Rev. B 40 506
[27] Ma T, Zhang L, Chang C C, Hung H H and Scalettar R T 2018 Phys. Rev. Lett. 120 116601
[28] Paiva T, Khatami E, Yang S, Rousseau V, Jarrell M, Moreno J, Hulet R G and Scalettar R T 2015 Phys. Rev. Lett. 115 240402
[29] Zhang L, Ma C and Ma T 2021 Phys. Status Solidi RRL 15 2100287
[30] Cheng S, Yu J, Ma T and Peres N M R 2015 Phys. Rev. B 91 075410
[31] Gloor T and Mila F 2004 Eur. Phys. J. B 38 9
[32] Herbut I F 2006 Phys. Rev. Lett. 97 146401
[33] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[34] Wehling T O, Ş aşıoǧlu E, Friedrich C, Lichtenstein A I, KatsnelsonMI and Blügel S 2011 Phys. Rev. Lett. 106 236805
[35] Ma T, Hu F, Huang Z and Lin H Q 2010 Appl. Phys. Lett. 97 112504
[36] Quan S, Zhang Y and Chen W 2022 Phys. Chem. Chem. Phys. 24 23929
[37] Reich S, Maultzsch J, Thomsen C and Ordejón P 2002 Phys. Rev. B 66 035412
[38] Torres V, Silva P, de Souza E A T, Silva L A and Bahamon D A 2019 Phys. Rev. B 100 205411
[39] Chang Y, Albash T and Haas S 2012 Phys. Rev. B 86 125402
[40] Huang E W, Sheppard R, Moritz B and Devereaux T P 2019 Science 366 987
[41] Scalettar R T, Trivedi N and Huscroft C 1999 Phys. Rev. B 59 4364
[42] Trivedi N and Randeria M 1995 Phys. Rev. Lett. 75 312
[43] Lederer S, Schattner Y, Berg E and Kivelson S A 2017 Proc. Natl. Acad. Sci. USA 114 4905
[44] Antipov A E, Javanmard Y, Ribeiro P and Kirchner S 2016 Phys. Rev. Lett. 117 146601
[45] Paiva T, Scalettar R T, ZhengW, Singh R R P and Oitmaa J 2005 Phys. Rev. B 72 085123
[46] Sorella S and Tosatti E 1992 Europhys. Lett. 19 699
[47] Martelo L M, Dzierzawa M, Siffert L and Baeriswyl D 1996 Z. Phys. B 103 335
[48] Furukawa N 2001 J. Phys. Soc. Jpn. 70 1483
[49] Meng Z Y, Lang T C, Wessel S, Assaad F F and Muramatsu A 2010 Nature 464 847
[1] Doping-induced magnetic and topological transitions in Mn2X2Te5 (X = Bi, Sb) bilayers
Wei Chen(陈威), Chuhan Tang(唐楚涵), Chao-Fei Liu(刘超飞), and Mingxing Chen(陈明星). Chin. Phys. B, 2025, 34(9): 097304.
[2] Manipulating the magnetic properties of MnBi2Te4 through electrochemical organic molecule intercalation
Yu Du(杜钰), Heng Zhang(张恒), Fuwei Zhou(周福伟), Tianqi Wang(王天奇), Jiajun Li(李佳骏), Wuyi Qi(戚无逸), Yiying Zhang (张祎颖), Yefan Yu(俞业凡), Fucong Fei(费付聪), and Fengqi Song(宋凤麒). Chin. Phys. B, 2025, 34(8): 087302.
[3] Role of symmetry in antiferromagnetic topological insulators
Sahar Ghasemi and Morad Ebrahimkhas. Chin. Phys. B, 2025, 34(7): 077302.
[4] Competing phases and suppression of superconductivity in hole-doped Hubbard model on honeycomb lattice
Hao Zhang(张浩), Shaojun Dong(董少钧), and Lixin He(何力新). Chin. Phys. B, 2025, 34(7): 077102.
[5] Complex magnetic and transport properties of EuBi2 single crystal
Ping Su(苏平), Hui Liang(梁慧), Yi-Ran Li(李祎冉), Huan Wang(王欢), Na Li(李娜), Kai-Yuan Hu(胡开源), Ying Zhou(周颖), Dan-Dan Wu(吴丹丹), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), Jin-Jin Hong(洪锦锦), Xia Zhao(赵霞), Xue-Feng Sun(孙学峰), and Yi-Yan Wang(王义炎). Chin. Phys. B, 2025, 34(6): 067503.
[6] Robustness of ferromagnetism in van der Waals magnet Fe3GeTe2 to hydrostatic pressure
Yonglin Wang(王涌霖), Xu-Tao Zeng(曾旭涛), Bo Li(李博), Cheng Su(宿程), Takanori Hattori, Xian-Lei Sheng(胜献雷), and Wentao Jin(金文涛). Chin. Phys. B, 2025, 34(4): 046203.
[7] Insights to unusual antiferromagnetic behavior and exchange coupling interactions in Mn23C6
Ze-Kun Yu(于泽坤), Chao Zhou(周超), Kuo Bao(包括), Zhao-Qing Wang(王兆卿), En-Xuan Li(李恩萱), Jin-Ming Zhu(朱金铭), Yuan Qin(秦源), Yu-Han Meng(孟钰涵), Pin-Wen Zhu(朱品文), Qiang Tao(陶强), and Tian Cui(崔田). Chin. Phys. B, 2025, 34(3): 037101.
[8] Single crystal growth and electronic structure of Fe-doped Sr3Ir2O7
Muhammad Waqas, Bingqian Wang(王冰倩), Shuting Peng(彭舒婷), Jianchang Shen(沈建昌), Linwei Huai(淮琳崴), Xiupeng Sun(孙秀鹏), Yu Miao(缪宇), Pelda Uzun, Runqing Luan(栾润青), Zikun Feng(冯梓琨), Dai Pan(潘岱), Xinru Yong(勇欣茹), Hongxu Sun(孙鸿绪), Zhipeng Ou(欧志鹏), and Junfeng He(何俊峰). Chin. Phys. B, 2025, 34(10): 107101.
[9] Tunable anomalous Hall effect and anisotropic magnetism in In-doped TbMn6Sn6 kagome magnets
Detong Wu(吴德桐), Jianwei Qin(秦建伟), and Bing Shen(沈冰). Chin. Phys. B, 2025, 34(10): 107511.
[10] Current-driven inertial domain wall dynamics in ferromagnet
Zai-Dong Li(李再东). Chin. Phys. B, 2025, 34(10): 107513.
[11] Review of magnons in van der Waals materials: From fundamental physics to frontiers
Zhen-Nan Wang(王震南), Yan-Pei Lv(吕延培), Hao-Nan Chang(常浩男), and Jun Zhang(张俊). Chin. Phys. B, 2025, 34(10): 107201.
[12] Electronic band structures of topological kagome materials
Man Li(李满), Huan Ma(马欢), Rui Lou(娄睿), and Shancai Wang(王善才). Chin. Phys. B, 2025, 34(1): 017101.
[13] Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials
Qian Wang(王乾), Da-Wei Wu(邬大为), Guang-Hua Guo(郭光华), Meng-Qiu Long(龙孟秋), and Yun-Peng Wang(王云鹏). Chin. Phys. B, 2024, 33(9): 097507.
[14] Dzyaloshinskii-Moriya interaction and field-free sub-10 nm topological magnetism in Fe/bismuth oxychalcogenides heterostructures
Yaoyuan Wang(王垚元), Long You(游龙), Kai Chang(常凯), and Hongxin Yang(杨洪新). Chin. Phys. B, 2024, 33(9): 097508.
[15] Simultaneous control of ferromagnetism and ferroelasticity by oxygen octahedral backbone stretching
Genhao Liang(梁根豪), Hui Cao(曹慧), Long Cheng(成龙), Junkun Zha(查君坤), Mingrui Bao(保明睿), Fei Ye(叶飞), Hua Zhou(周华), Aidi Zhao(赵爱迪), and Xiaofang Zhai(翟晓芳). Chin. Phys. B, 2024, 33(9): 097101.
No Suggested Reading articles found!