Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 098701    DOI: 10.1088/1674-1056/ade250
RAPID COMMUNICATION Prev   Next  

Optically-excited acoustic waves in Si nanowires probed by time-resolved HOLZ lines

He Wang(王贺)1, Shuaishuai Sun(孙帅帅)2, Yizhe Wang(王怡哲)1, Qianming An(安乾明)1, Xianhui Ye(叶显珲)1, Jun Li(李俊)2, Huanfang Tian(田焕芳)2, Huaixin Yang(杨槐馨)2, Jianqi Li(李建奇)2,†, and Zian Li(李子安)1,‡
1 School of Physical Science and Technology, Guangxi University, Nanning 530004, China;
2 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Exploring advanced techniques capable of probing nanometric acoustic waves in nanostructures is critically important for the development of miniaturized acoustic devices. In this study, we probe the optically-excited acoustic waves in a single silicon nanowire (NW) using the time-resolved (tr-) high-order Laue-zone (HOLZ) lines under convergent-beam electron diffraction (CBED) conditions in an ultrafast transmission electron microscope (UTEM). We devise an experimental scheme to obtain tr-HOLZ lines under off-zone-axis CBED conditions. We also propose a geometric description of HOLZ line formation and use this alternative description to quantitatively evaluate the dynamics of optically-excited silicon NW. Using part of the deformation gradient tensor, our simulations of the dynamics of Si NW reproduce the experimental results. We further discuss the feasibility of a full retrieval of the deformation gradient tensor by using a set of HOLZ lines from three zone axes. Our findings illustrate a strategy for the quantitative access to dynamical acoustic waves optically excited in micro- and nano-structures using UTEM.
Keywords:  ultrafast transmission electron microscope      high-order Laue-zone lines      pulsed laser excitation      acoustic waves  
Received:  10 May 2025      Revised:  06 June 2025      Accepted manuscript online:  09 June 2025
PACS:  87.64.Ee (Electron microscopy)  
  61.05.jm (Convergent-beam electron diffraction, selected-area electron diffraction, nanodiffraction)  
Fund: This project is supported by the Guangxi Natural Science Foundation (Grant No. 2024GXNSFDA010014), the National Natural Science Foundation of China (Grant Nos. 12364018 and U22A6005), the Guangxi Science and Technology Major Program (Grant No. AA23073019), and the Innovation Project of Guangxi Graduate Education (Grant Nos. YCBZ2022049 and YCBZ2023015).
Corresponding Authors:  Tiejun Zhou, Zian Li     E-mail:  LJQ@iphy.ac.cn;zianli@gxu.edu.cn

Cite this article: 

He Wang(王贺), Shuaishuai Sun(孙帅帅), Yizhe Wang(王怡哲), Qianming An(安乾明), Xianhui Ye(叶显珲), Jun Li(李俊), Huanfang Tian(田焕芳), Huaixin Yang(杨槐馨), Jianqi Li(李建奇), and Zian Li(李子安) Optically-excited acoustic waves in Si nanowires probed by time-resolved HOLZ lines 2025 Chin. Phys. B 34 098701

[1] Zhang M, Li Z A, Tian H, Yang H and Li J 2018 Appl. Phys. Lett. 113 133103
[2] Danz T, Domröse T and Ropers C 2021 Science 371 371
[3] Harb M, Peng W, Sciaini G, Hebeisen C T, Ernstorfer R, Eriksson M A, Lagally M G, Kruglik S G and Miller R J D 2009 Phys. Rev. B 79 094301
[4] McKenna A J, Eliason J K and Flannigan D J 2017 Nano Lett. 17 3952
[5] Zhang Y, Sun S, Wang W, Tian H, Li J, Li J and Yang H 2023 Phys. Rev. B 108 245426
[6] Qian Q, Shen X, Luo D, Jia L, Kozina M, Li R, Lin M F, Reid A H, Weathersby S, Park S, Yang J, Zhou Y, Zhang K, Wang X and Huang S 2020 ACS Nano 14 8449
[7] Fu X, Barantani F, Gargiulo S, Madan I, Berruto G, LaGrange T, Jin L, Wu J, Vanacore G M, Carbone F and Zhu Y 2020 Nat. Commun. 11 5770
[8] Plemmons D A, Suri P K and Flannigan D J 2015 Chem. Mater. 27 3178
[9] Lian Y, Sun J and Jiang L 2023 Int. J. Mech. Syst. Dyn. 3 192
[10] Zhou F, Liu H, Zajac M, Hwangbo K, Jiang Q, Chu J H, Xu X, Arslan I, Gage T E and Wen H 2023 Nano Lett. 23 10213
[11] Kwon O H, Barwick B, Park H S, Baskin J S and Zewail A H 2008 Nano Lett. 8 3557
[12] Baskin J S, Park H S and Zewail A H 2011 Nano Lett. 11 2183
[13] Tong L, Yuan J, Zhang Z, Tang J and Wang Z 2023 Nat. Nanotechnol. 18 145
[14] Sun S, Li Z, Li Z A, Xiao R, Zhang M, Tian H, Yang H and Li J 2018 Nanoscale 10 7465
[15] Li Z, Sun S, Li Z A, Zhang M, Cao G, Tian H, Yang H and Li J 2017 Nanoscale 9 13313
[16] Tanaka M and Tsuda K 2011 J. Electron Microsc. 60 S245
[17] Huang J, KimMJ, Chidambaram P R, Irwin R B, Jones P J,Weijtmans JW, Koontz E M,Wang Y G, Tang S andWise R 2006 Appl. Phys. Lett. 89 063114
[18] Jones E J, Azize M, Smith M J, Palacios T and Gradečak S 2012 Appl. Phys. Lett. 101 113101
[19] Yurtsever A and Zewail A H 2009 Science 326 708
[20] Yurtsever A, Schaefer S and Zewail A H 2012 Nano Lett. 12 3772
[21] Flannigan D J, Cremons D R and Valley D T 2017 J. Mater. Res. 32 239
[22] Feist A, Rubiano da Silva N, Liang W, Ropers C and Schäfer S 2018 Struct. Dyn. 5 014302
[23] Bach N, Feist A, Möller M, Ropers C and Schäfer S 2022 Struct. Dyn. 9 034301
[24] Nakamura A, Shimojima T and Ishizaka K 2022 Faraday Discuss. 237 27
[25] Martin Y, Rouviere J, Zuo J and Favre-Nicolin V 2016 Ultramicrosc. 160 64
[26] Morawiec A 2005 Philos. Mag. 85 1611
[27] Carbone F, Baum P, Rudolf P and Zewail A H 2008 Phys. Rev. Lett. 100 035501
[28] Maier H, Keller R, Renner H, Mughrabi H and Preston A 1996 Philos. Mag. A 74 23
[29] Wittmann R, Kruse P, FrauenkronMand Gerthsen D 2000 Philos. Mag. A 80 2215
[30] Zuo J M and Spence J C 2017 Advanced Transmission Electron Microscopy (New York: Springer)
[31] Feist A, Bach N, Rubiano da Silva N, Danz T, Möller M, Priebe K E, Domröse T, Gatzmann J G, Rost S, Schauss J, Strauch S, Bormann R, Sivis M, Schäfer S and Ropers C 2017 Ultramicroscopy 176 63
[32] Houdellier F, Caruso G, Weber S, Hÿtch M, Gatel C and Arbouet A 2019 Ultramicroscopy 202 26
[33] Zhu C, Zheng D, Wang H, Zhang M, Li Z, Sun S, Xu P, Tian H, Li Z, Yang H and Li J 2020 Ultramicroscopy 209 112887
[34] Chang S L, Dwyer C, Barthel J, Boothroyd C B and Dunin-Borkowski R E 2016 Ultramicroscopy 161 90
[35] Cattaneo M, Müller-Caspary K, Barthel J, MacArthur K E, Gauquelin N, Lipinska-Chwalek M, Verbeeck J, Allen L J and Dunin-Borkowski R E 2024 Ultramicroscopy 267 114050
[1] Acoustic detection of high-resistance states in gated bilayer graphene devices
Guo-Quan Qin(秦国铨), Yi-Bo Wang(王奕博), Guo-Sheng Lei(雷国盛), Zhuo-Zhi Zhang(张拙之), Xiang-Xiang Song(宋骧骧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2025, 34(9): 097201.
[2] Nonlinear ion acoustic waves in multicomponent plasmas with nonthermal electrons-positron and bipolar ions
Mai-Mai Lin(林麦麦), Chen-Guang Song(宋晨光), Fu-Yan Chen(陈富艳), and Ming-Yue Wang(王明月). Chin. Phys. B, 2024, 33(12): 125202.
[3] The (1+1)-dimensional nonlinear ion acoustic waves in multicomponent plasma containing kappa electrons
Mai-Mai Lin(林麦麦), Lei Jiang(蒋蕾), and Ming-Yue Wang(王明月). Chin. Phys. B, 2023, 32(12): 125201.
[4] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[5] The (3+1)-dimensional generalized mKdV-ZK equation for ion-acoustic waves in quantum plasmas as well as its non-resonant multiwave solution
Xiang-Wen Cheng(程香雯), Zong-Guo Zhang(张宗国), and Hong-Wei Yang(杨红卫). Chin. Phys. B, 2020, 29(12): 124501.
[6] Nondestructive determination of film thickness with laser-induced surface acoustic waves
Xiao Xia(肖夏), Kong Tao(孔涛), Qi Hai Yang(戚海洋), Qing Hui Quan(秦慧全). Chin. Phys. B, 2018, 27(9): 096802.
[7] Ultrafast electron microscopy in material science
Huaixin Yang(杨槐馨), Shuaishuai Sun(孙帅帅), Ming Zhang(张明), Zhongwen Li(李中文), Zian Li(李子安), Peng Xu(徐鹏), Huanfang Tian(田焕芳), Jianqi Li(李建奇). Chin. Phys. B, 2018, 27(7): 070703.
[8] Relativistic degenerate effects of electrons and positrons on modulational instability of quantum ion acoustic waves in dense plasmas with two polarity ions
Liu Tie-Lu (刘铁路), Wang Yun-Liang (王云良), Lu Yan-Zhen (路彦珍). Chin. Phys. B, 2015, 24(2): 025202.
[9] Space–time fractional KdV–Burgers equation for dust acoustic shock waves in dusty plasma with non-thermal ions
Emad K. El-Shewy, Abeer A. Mahmoud, Ashraf M. Tawfik, Essam M. Abulwafa, Ahmed Elgarayhi. Chin. Phys. B, 2014, 23(7): 070505.
[10] Parametric instabilities in single-walled carbon nanotubes
He Cai-Xia (何彩霞), Jian Yue (简粤), Qi Xiu-Ying (祁秀英), Xue Ju-Kui (薛具奎). Chin. Phys. B, 2014, 23(2): 025202.
[11] Effects of bi-kappa distributed electrons on dust-ion-acoustic shock waves in dusty superthermal plasmas
M. S. Alam, M. M. Masud, A. A. Mamun. Chin. Phys. B, 2013, 22(11): 115202.
[12] Ion-acoustic waves in plasma of warm ions and isothermal electrons using time-fractional KdV equation
Sayed A. El-Wakil, Essam M. Abulwafa, Emad K. El-Shewy, and Abeer A. Mahmoud. Chin. Phys. B, 2011, 20(4): 040508.
[13] Influence of adhesive layer properties on laser-generated ultrasonic waves in thin bonded plates
Sun Hong-Xiang(孙宏祥), Xu Bai-Qiang(许伯强), Zhang Hua(张华), Gao Qian(高倩), and Zhang Shu-Yi(张淑仪). Chin. Phys. B, 2011, 20(1): 014302.
[14] Nonlinear acoustic waves in a collisional self-gravitating dusty plasma
Guo Zhi-Rong(郭志荣), Yang Zeng-Qiang(杨增强), Yin Bao-Xiang(殷保祥), and Sun Mao-Zhu(孙茂珠). Chin. Phys. B, 2010, 19(11): 115203.
[15] Acoustic elliptical cylindrical cloaks
Ma Hua(马华), Qu Shao-Bo(屈绍波), Xu Zhuo(徐卓), and Wang Jia-Fu(王甲富). Chin. Phys. B, 2009, 18(3): 1123-1126.
No Suggested Reading articles found!