Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 098501    DOI: 10.1088/1674-1056/ade42c
RAPID COMMUNICATION Prev   Next  

Interlayer exchange coupling effects on the spin-orbit torque in synthetic magnets

Haodong Fan(樊浩东)1,2, Zhongshu Feng(冯重舒)3, Tingwei Chen(陈亭伟)2, Xiaofeng Han(韩晓峰)3, Xinyu Shu(舒新愉)3, Mingzhang Wei(卫鸣璋)3, Shiqi Liu(刘士琦)2, Mengxi Wang(王梦溪)2, Shengru Chen(陈盛如)2, Xuejian Tang(唐学健)2, Menghao Jin(金蒙豪)3, Yungui Ma(马云贵)1, Bo Liu(刘波)2,†, and Tiejun Zhou(周铁军)2,3,‡
1 State Key Laboratory of Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China;
2 State Key Laboratory of Spintronic Devices and Technologies, Hangzhou 311305, China;
3 School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
Abstract  Interlayer exchange coupling (IEC) plays a critical role in spin-orbit torque (SOT) switching in synthetic magnets. This work establishes a fundamental correlation between IEC and SOT dynamics within Co/Pt-based synthetic antiferromagnets and synthetic ferromagnets. The antiferromagnetic and ferromagnetic coupling states are precisely engineered through Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions by modulating the Ir spacer thickness. Experimental results reveal that the critical switching current density exhibits a strong positive correlation with the IEC strength, regardless of the coupling type. A comprehensive theoretical framework based on the Landau-Lifshitz-Gilbert equation elucidates how IEC contributes to the effective energy barrier that must be overcome during SOT-induced magnetization switching. Significantly, the antiferromagnetically coupled samples demonstrate enhanced SOT efficiency, with the spin Hall angle being directly proportional to the antiferromagnetic exchange coupling field. These insights establish a coherent physical paradigm for understanding IEC-dependent SOT dynamics and provide strategic design principles for the development of energy-efficient next-generation spintronic devices.
Keywords:  interlayer exchange coupling      spin-orbit torque      synthetic antiferromagnet  
Received:  12 May 2025      Revised:  12 June 2025      Accepted manuscript online:  13 June 2025
PACS:  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  75.60.Jk (Magnetization reversal mechanisms)  
  85.70.Ay (Magnetic device characterization, design, and modeling)  
Fund: Project supported by the “Pioneer” and “Leading Goose” R&D Program of Zhejiang Province (Grant No. 2022C01053), the Key Research and Development Program of Zhejiang Province (Grant No. 2021C01039), the National Natural Science Foundation of China (Grant No. 62293493), and the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ21A050001).
Corresponding Authors:  Bo Liu, Tiejun Zhou     E-mail:  liubo@spinlab.cn;tjzhou@hdu.edu.cn

Cite this article: 

Haodong Fan(樊浩东), Zhongshu Feng(冯重舒), Tingwei Chen(陈亭伟), Xiaofeng Han(韩晓峰), Xinyu Shu(舒新愉), Mingzhang Wei(卫鸣璋), Shiqi Liu(刘士琦), Mengxi Wang(王梦溪), Shengru Chen(陈盛如), Xuejian Tang(唐学健), Menghao Jin(金蒙豪), Yungui Ma(马云贵), Bo Liu(刘波), and Tiejun Zhou(周铁军) Interlayer exchange coupling effects on the spin-orbit torque in synthetic magnets 2025 Chin. Phys. B 34 098501

[1] Liu L, Yu J, González-Hernández R, Li C, Deng J Y. Lin W N, Zhou C H, Zhou T J, Zhou J, Wang H, Guo R, Yoong H Y, Chow G M, Han X F, Dupé B, Železný J, Sinova J and Chen J S 2020 Phys. Rev. B 101 220402
[2] Sinova, J, Valenzuela, S O, Wunderlich J, Back C H and Jungwirth T 2015 Rev. Mod. Phys. 87 1213
[3] Song Q, Mi J, Zhao D, Su T, Yuan W, Xing W Y, Chen Y Y, Wang T Y, Wu T, Chen X H, Xie X C, Zhang C, Shi J and Han W 2016 Nat. Commun. 7 13485
[4] Shao Q M, Li P, Liu L Q, Yang H, Fukami S, Razavi A, Wu H, Wang K, Freimuth F, Mokrousov Y, Stiles M D, Emori S, Hoffmann A, Akerman J, Roy K, Wang J P, Yang S H, Garello K and Zhang W 2021 IEEE Trans. Magn. 57 800439
[5] Zhu L J, Ralph D C and Buhrman R A 2021 Appl. Phys. Rev. 8 031308
[6] Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555
[7] Liu L Q, Lee O J, Gudmundsen T J, Ralph D C and Buhrman R A 2012 Phys. Rev. Lett. 109 096602
[8] Fan H D, Shao Z J, Wang J L, Jin M H, Wu B R, Feng Z S, Wei M Z, Yu C Q, Wen J H, Li H, Chen T W, Liu B, Li W J and Zhou T J 2023 Phys. Rev. B 108 224409
[9] Han X F, Wang X, Wan C H, Yu G Q and Lv X R 2021 Appl. Phys. Lett. 118 120502
[10] Yu G Q, Upadhyaya P, Fan Y B, Alzate J G, Jiang W J, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M R, Tang J S, Wang Y, Tserkovnyak Y, Amiri P K and Wang K L 2014 Nat. Nanotechnol. 9 548
[11] Liu L, Zhou C H, Shu X Y, Li C J, Zhao T Y, Lin W N, Deng J Y, Xie Q D, Chen S H, Zhou J, Guo R, Wang H, Yu J H, Shi S, Yang P, Pennycook S, Manchon A and Chen J S 2021 Nat. Nanotechnol. 16 277
[12] Shu X Y, Liu L, Zhou J, LinWN, Xie Q D, Zhao T Y, Zhou C H, Chen S H, Wang H, Chai J W, Ding Y S, Chen W and Chen J S 2022 Phys. Rev. Appl. 17 024031
[13] Shi G Y, Wan C H, Chang Y S, Li F, Zhou X J, Zhang P X, Cai J W, Han X F, Pan F and Song C 2017 Phys. Rev. B 95 104435
[14] Haazen P P J, Mure E, Franken J H, Lavrijsen R, Swagten H J M and Koopmans B 2013 Nat. Mater. 12 299
[15] Zhou Z Y, Cheng X K, Hu M L, Chu R Y, Bai H, Han L, Liu J W, Pan F and Song C 2025 Nature 638 645
[16] Higo T, Kondou K, Nomoto T, Shiga M, Sakamoto S, Chen X Z, Nishio-Hamane D, Arita R, Otani Y, Miwa S and Nakatsuji S 2022 Nature 607 474
[17] Qin P X, Yan H, Wang X N, Chen H Y, Meng Z, Dong J T, Zhu M, Cai J L, Feng Z X, Zhou X R, Liu L, Zhang T L, Zeng Z M, Zhang J, Jiang C B and Liu Z Q 2023 Nature 613 485
[18] Hu S, Shao D F, Yang H L, Pan C, Fu Z X, Tang M, Yang Y M, Fan W J, Zhou S M, Tsymbal E Y and Qiu X P 2022 Nat. Commun. 13 4447
[19] Krempaský J, Šmejkal L, D’souza S W, et al. 2024 Nature 626 517
[20] Chen X Z, Higo T, Tanaka K, Nomoto T, Tsai H, Idzuchi H, Shiga M, Sakamoto S, Ando R, Kosaki H, Matsuo T, Nishio-Hamane D, Arita R, Miwa S and Nakatsuji S 2023 Nature 613 490
[21] Chen H Y, Liu L, Zhou X R, Meng Z, Wang X N, Duan Z Y, Zhao G J, Yan H, Qin P X and Liu Z Q 2024 Adv. Mater. 36 2310379
[22] Duine R A, Lee K J, Parkin S S P and Stiles M D 2018 Nat. Phys. 14 217
[23] Zhu L J 2023 Adv. Mater. 35 2300853
[24] Chen R Y, Gao Y, Zhang X C, Zhang R Q, Yin S Q, Chen X Z, Zhou X F, Zhou Y J, Xia J, Zhou Y, Wang S G, Pan F, Zhang Y and Song C 2020 Nano. Lett. 20 3299
[25] Wang Z L, Li P Z, Fattouhi M, Yao Y X, Hees Y LWV, Schippers C F, Zhang X Y, Lavrijsen R, Garcia-Sanchez F, Martinez E, Fert A, Zhao W S and Koopmans B 2023 Cell Rep. Phys. Sci. 4 101334
[26] Wang Q H, Ni M Y, Li S J, Zheng F W, Lu H Y and Zhang P 2024 Chin. Phys. Lett. 41 057401
[27] Bi C, Almasi H, Price K, Newhouse-Illige T, Xu M, Allen S R, Fan X and Wang W G 2017 Phys. Rev. B 95 104434
[28] Xie X J, Wang X J, Wang W, Zhao X N, Bai L H, Chen Y X, Tian Y F and Yan S S 2023 Adv. Mater. 35 2208275
[29] Parkin S S P 1991 Phys. Rev. Lett. 67 3598
[30] Yoshida C, Takenaga T, Iba Y, Yamazaki Y, Noshiro H, Tsunoda K, Hatada A, Nakabayashi M, Takahashi A, Aoki M and Sugii T 2013 IEEE Trans. Magn. 49 4363
[31] Fan H D,Wei M Z, Feng Z S,Wu B R, Jin M H, Shao Z J, Yu C Q, Liu B, Li W J and Zhou T J 2025 Phys. Rev. Mater. 9 044402
[32] Zhang T F, Wang Q W, Chen M, Dong J, Zhao Q, Li Z M, Liu Q F, Wang J B and Wei J W 2025 Chin. Phys. B 34 057201
[33] Zhang R Q, Shi G Y, Su J, Shang Y X, Cai J W, Liao L Y, Pan F and Song C 2020 Appl. Phys. Lett. 117 212403
[34] Fan H D, Jin M H, Luo Y M, Yang H X, Wu B R, Feng Z S, Zhuang Y S, Shao Z J, Yu C Q, Li H, Wen J H, Wang N N, Liu B, Li W J and Zhou T J 2023 Adv. Funct. Mater. 33 2211953
[35] Zhang P X, Liao L Y, Shi G Y, Zhang R Q, Wu H Q, Wang Y Y, Pan F and Song C 2018 Phys. Rev. B 97 214403
[36] Yakushiji K, Sugihara A, Fukushima A, Kubota H and Yuasa S 2017 Appl. Phys. Lett. 110 092406
[37] Li Z S, Fei Y N, Chen L, Zhan X, Yang L P, Yan C J,WangWQ, Zhou K Y, Li H T, Ma F S, Zhou T J, Du Y W and Liu R H 2022 Phys. Rev. B 105 184419
[38] Li Y, Jin X J, Pan P F, Tan F N, LewWS and Ma F S 2018 Chin. Phys. B 27 127502
[39] Feng Z S, Yu C Q, Huang H X, Fan H D, Wei M Z, Wu B R, Jin M H, Zhuang Y S, Shao Z J, Li H,Wen J H, Zhang J, Zhang X F,Wang N N, Mu S and Zhou T J 2023 Chin. Phys. B 32 048504
[40] Saito Y, Tezuka N, Ikeda S and Endoh T 2021 Phys. Rev. B 104 064439
[41] Parkin S S P and Mauri D 1991 Phys. Rev. B 44 7131
[42] Shen B W, Yang M Y, Li Y R, Yu P Y, Gao J F, Cui B S, Yu G Q and Luo J 2024 Appl. Phys. Lett. 124 012401
[43] Saito Y, Ikeda S and Endoh T 2022 Phys. Rev. B 105 054421
[44] Fan H D, Jin M H, Wu B R, Wei M Z, Wang J L, Shao Z J, Yu C Q, Wen J H, Li H, LiWJ and Zhou T J 2023 Appl. Phys. Lett. 122 262404
[45] Ma Q L, Li Y F, Choi Y S, Chen W C, Han S J and Chien C L 2020 Appl. Phys. Lett. 117 172403
[46] Liu L, Zhao X T, Liu W, Song Y H, Zhao X G and Zhang Z D 2021 J. Phys. D: Appl. Phys. 54 505003
[47] Fache T, Rojas-Sanchez J C, Badie L, Mangin S and Petit-Watelot S 2020 Phys. Rev. B 102 064425
[48] Ishikuro Y, Kawaguchi M, Taniguchi T and Hayashi M 2020 Phys. Rev. B 101 014404
[49] Chuang T C, Pai C F and Huang S Y 2019 Phys. Rev. Appl. 11 061005
[50] Pai C F, Mann M, Tan A J and Beach G S D 2016 Phys. Rev. B 93 144409
[1] Recent progress on electron- and magnon-mediated torques
Jia-Min Lai(来嘉敏), Bingyue Bian(边冰玥), Zhonghai Yu(于忠海), Kaiwei Guo(郭凯卫), Yajing Zhang(张雅静), Pengnan Zhao(赵鹏楠), Xiaoqian Zhang(张霄倩), Chunyang Tang(汤春阳), Jiasen Cao(曹家森), Zhiyong Quan(全志勇), Fei Wang(王飞), and Xiaohong Xu(许小红). Chin. Phys. B, 2025, 34(10): 107501.
[2] In-phase and out-of-phase spin pumping effects in Py/Ru/Py synthetic antiferromagnetic structures
Zhaocong Huang(黄兆聪), Xuejian Tang(唐学健), Qian Chen(陈倩), Wei Jiang(蒋伟), Qingjie Guo(郭庆杰), Milad Jalali, Jun Du(杜军), and Ya Zhai(翟亚). Chin. Phys. B, 2024, 33(9): 097202.
[3] Influence of exchange bias on spin torque ferromagnetic resonance for quantification of spin-orbit torque efficiency
Qian Zhao(赵乾), Tengfei Zhang(张腾飞), Bin He(何斌), Zimu Li(李子木), Senfu Zhang(张森富), Guoqiang Yu(于国强), Jianbo Wang(王建波), Qingfang Liu(刘青芳), and Jinwu Wei(魏晋武). Chin. Phys. B, 2024, 33(5): 058502.
[4] Spin-orbit torque effect in silicon-based sputtered Mn3Sn film
Sha Lu(卢莎), Dequan Meng(孟德全), Adnan Khan, Ziao Wang(王子傲), Shiwei Chen(陈是位), and Shiheng Liang(梁世恒). Chin. Phys. B, 2024, 33(10): 107501.
[5] Topological magnetotransport and electrical switching of sputtered antiferromagnetic Ir20Mn80
Danrong Xiong(熊丹荣), Yuhao Jiang(蒋宇昊), Daoqian Zhu(朱道乾), Ao Du(杜奥), Zongxia Guo(郭宗夏), Shiyang Lu(卢世阳), Chunxu Wang(王春旭), Qingtao Xia(夏清涛), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2023, 32(5): 057501.
[6] Investigation of magnetization reversal and domain structures in perpendicular synthetic antiferromagnets by first-order reversal curves and magneto-optical Kerr effect
Xiang-Qian Wang(王向谦), Jia-Nan Li(李佳楠), Kai-Zhou He(何开宙),Ming-Ling Xie(谢明玲), and Xu-Peng Zhu(朱旭鹏). Chin. Phys. B, 2023, 32(11): 117502.
[7] Spin-orbit torque in perpendicularly magnetized [Pt/Ni] multilayers
Ying Cao(曹颖), Zhicheng Xie(谢志成), Zhiyuan Zhao(赵治源), Yumin Yang(杨雨民), Na Lei(雷娜), Bingfeng Miao(缪冰锋), and Dahai Wei(魏大海). Chin. Phys. B, 2023, 32(10): 107507.
[8] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[9] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[10] Ru thickness-dependent interlayer coupling and ultrahigh FMR frequency in FeCoB/Ru/FeCoB sandwich trilayers
Le Wang(王乐), Zhao-Xuan Jing(荆照轩), Ao-Ran Zhou(周傲然), and Shan-Dong Li(李山东). Chin. Phys. B, 2022, 31(8): 086201.
[11] Switching plasticity in compensated ferrimagnetic multilayers for neuromorphic computing
Weihao Li(李伟浩), Xiukai Lan(兰修凯), Xionghua Liu(刘雄华), Enze Zhang(张恩泽), Yongcheng Deng(邓永城), and Kaiyou Wang(王开友). Chin. Phys. B, 2022, 31(11): 117106.
[12] Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer
Zi-Bo Zhang(张子博) and Yong Hu(胡勇). Chin. Phys. B, 2021, 30(7): 077503.
[13] Enhanced spin-orbit torque efficiency in Pt100-xNix alloy based magnetic bilayer
Congli He(何聪丽), Qingqiang Chen(陈庆强), Shipeng Shen(申世鹏), Jinwu Wei(魏晋武), Hongjun Xu(许洪军), Yunchi Zhao(赵云驰), Guoqiang Yu(于国强), and Shouguo Wang(王守国). Chin. Phys. B, 2021, 30(3): 037503.
[14] Giant interface spin-orbit torque in NiFe/Pt bilayers
Shu-Fa Li(李树发), Tao Zhu(朱涛). Chin. Phys. B, 2020, 29(8): 087102.
[15] Perpendicular magnetization switching by large spin—orbit torques from sputtered Bi2Te3
Zhenyi Zheng(郑臻益), Yue Zhang(张悦), Daoqian Zhu(朱道乾), Kun Zhang(张昆), Xueqiang Feng(冯学强), Yu He(何宇), Lei Chen(陈磊), Zhizhong Zhang(张志仲), Dijun Liu(刘迪军), Youguang Zhang(张有光), Pedram Khalili Amiri, Weisheng Zhao(赵巍胜). Chin. Phys. B, 2020, 29(7): 078505.
No Suggested Reading articles found!