|
Special Issue:
SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas
|
| SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas |
Prev
Next
|
|
|
Charge doping induced thermal switches with a high switching ratio in monolayer MoS2 |
| Chen Gui(桂琛), Zhi-Fu Duan(段志福), Chang-Hao Ding(丁长浩), Hao Chen(陈浩), Yuan Yao(姚远), Nan-Nan Luo(罗南南)†, Jiang Zeng(曾犟), Li-Ming Tang(唐黎明), and Ke-Qiu Chen(陈克求)‡ |
| Department of Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China |
|
|
|
|
Abstract The thermal switch plays a crucial role in regulating system temperature, protecting devices from overheating, and improving energy efficiency. Achieving a high thermal switching ratio is essential for its practical application. In this study, by utilizing first-principles calculations and semi-classical Boltzmann transport theory, it is found that hole doping with an experimentally achievable concentration of $1.83 \times 10^{14}$ cm$^{-2}$ can reduce the lattice thermal conductivity of monolayer MoS$_2$ from 151.79 W$\cdot$m$^{-1}\cdot$K$^{-1}$ to 12.19 W$\cdot$m$^{-1}\cdot$K$^{-1}$, achieving a high thermal switching ratio of 12.5. The achieved switching ratio significantly surpasses previously reported values, including those achieved by extreme strain methods. This phenomenon mainly arises from the enhanced lattice anharmonicity, which is primarily contributed by the S atoms. These results indicate that hole doping is an effective method for tuning the lattice thermal conductivity of materials, and demonstrate that monolayer MoS$_2$ is a potential candidate material for thermal switches.
|
Received: 15 March 2025
Revised: 30 April 2025
Accepted manuscript online: 15 May 2025
|
|
PACS:
|
74.25.Kc
|
(Phonons)
|
| |
66.70.-f
|
(Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)
|
| |
65.80.-g
|
(Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)
|
| |
74.25.fc
|
(Electric and thermal conductivity)
|
|
| Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12104145 and 12374040). |
Corresponding Authors:
Nan-Nan Luo, Ke-Qiu Chen
E-mail: luonn@hnu.edu.cn;keqiuchen@hnu.edu.cn
|
Cite this article:
Chen Gui(桂琛), Zhi-Fu Duan(段志福), Chang-Hao Ding(丁长浩), Hao Chen(陈浩), Yuan Yao(姚远), Nan-Nan Luo(罗南南), Jiang Zeng(曾犟), Li-Ming Tang(唐黎明), and Ke-Qiu Chen(陈克求) Charge doping induced thermal switches with a high switching ratio in monolayer MoS2 2025 Chin. Phys. B 34 097401
|
[1] Lu Q, Huberman S, Zhang H, Song Q, Wang J, Vardar G, Hunt A, Waluyo I, Chen G and Yildiz B 2020 Nat. Mater. 19 655 [2] Hentrich R,Wolter A U B, Zotos X, BrenigW, Nowak D, Isaeva A, Doert T, Banerjee A, Lampen-Kelley P, Mandrus D G, Nagler S E, Sears J, Kim Y J, Büchner B and Hess C 2018 Phys. Rev. Lett. 120 117204 [3] Meng X H, Pandey T, Jeong J, Fu S Y, Yang J, Chen K, Singh A, He F, Xu X C, Zhou J S, Hsieh W P, Singh A K, Lin J F and Wang Y G 2019 Phys. Rev. Lett. 122 155901 [4] Pan H, Ding Z K, Zeng B W, Luo N N, Zeng J, Tang L M and Chen K Q 2023 Phys. Rev. B 107 104303 [5] Pan H, Tang L M and Chen K Q 2022 Phys. Rev. B 105 064401 [6] Jia J J, Li S C, Chen X and Shigesato Y 2024 Adv. Funct. Mater. 34 2406667 [7] Lian M, Geng Y, Chen Y J, Chen Y and Lü J T 2024 Phys. Rev. Lett. 133 116303 [8] Swoboda T, Klinar K, Yalamarthy A S, Kitanovski A and Rojo M M 2021 Adv. Electron. Mater. 7 2170008 [9] Shin J, Sung J, Kang M, Xie X, Lee B, Lee K M, White T J, Leal C, Sottos N R, Braun P V and Cahill D G 2019 Proc. Nat. Acad. Sci. USA 116 5973 [10] Hu P, Wang J, Zhang P, Wu F, Cheng Y, Wang J and Sun Z 2023 Adv. Mater. 35 2207638 [11] Du T T, Xiong Z X, Delgado L, Liao W Z, Peoples J, Kantharaj R, Chowdhury P R, Marconnet A and Ruan X L 2021 Nat. Commun. 12 4915 [12] Zheng R T, Gao J W, Wang J J and Chen G 2011 Nat. Commun. 2 289 [13] Wang X M, Fan C, Zhao Z Y, Tao W, Liu X G, Ke W P, Zhao X and Sun X F 2010 Phys. Rev. B 82 094405 [14] McGuire C, Sawchuk K and Kavner A 2018 J. Appl. Phys. 124 115902 [15] Gu X K, Wei Y J, Yin X B, Li B W and Yang R G 2018 Rev. Mod. Phys. 90 041002 [16] Kim S E, Mujid F, Rai A, Eriksson F, Suh J, Poddar P, Ray A, Park C, Fransson E, Zhong Y, Muller D A, Erhart P, Cahill D G and Park J 2021 Nature 597 660 [17] He R, Wang D, Luo N N, Zeng J, Chen K Q and Tang L M 2023 Phys. Rev. Lett. 130 046401 [18] Liu W, Ding Z K, Luo N, Zeng J, Tang L M and Chen K Q 2024 Phys. Rev. B 109 115422 [19] Li Q Q, Liu W W, Ding Z K, Pan H, Cao X H, Xiao W H, Luo N N, Zeng J, Tang L M, Li B, Chen K Q and Duan X D 2023 Appl. Phys. Lett. 122 121902 [20] Xiao W H, Yang K, D’Agosta R, Xu H R, Ouyang G, Zhou G, Chen K Q and Tang L M 2024 Phys. Rev. B 109 115427 [21] Li Q Q, Duan Z F, Liu W W, Yang R, Li B and Chen K Q 2025 Nano Res. 18 94907188 [22] Wang Y, Luo N, Zeng J, Tang L M and Chen K Q 2023 Phys. Rev. B 108 054401 [23] Ding Z K, Zeng Y J, LiuW, Tang L M and Chen K Q 2024 Adv. Funct. Mater. 34 2401684 [24] Duan Z F, Ding C H, Ding Z K, Xiao W H, Xie F, Luo N N, Zeng J, Tang L M and Chen K Q 2024 Chin. Phys. B 33 087302 [25] Luo N, Zeng J, Tang LMand Chen K Q 2025 Phys. Rev. B 111 125416 [26] Liu W, Ding Z K, Luo N, Zeng J, Tang L M and Chen K Q 2025 Phys. Rev. B 111 115407 [27] Liu C H, Si Y Y, Zhang H, Wu C, Deng S Q, Dong Y Q, Li Y J, Zhuo M, Fan N B, Xu B, Lu P, Zhang L F, Lin X, Liu X J, Yang J K, Luo Z L, Das S, Bellaiche L, Chen Y F and Chen Z H 2023 Science 382 1265 [28] Duan Z F, Ding Z K, Xie F, Zeng J, Tang L M, Luo N N and Chen K Q 2025 Appl. Phys. Lett. 126 022205 [29] Sangwan V K, Lee H S, Bergeron H, Balla I, Beck M E, Chen K S and Hersam M C 2018 Nature 554 500 [30] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147 [31] Yue Q, Kang J, Shao Z Z, Zhang X A, Chang S L, Wang G, Qin S Q and Li J B 2012 Phys. Lett. A 376 1166 [32] Jia P Z, Zeng Y J, Wu D, Pan H, Cao X H, Zhou W X, Xie Z X, Zhang J X and Chen K Q 2020 J. Phys.: Condens. Mat. 32 055302 [33] Wang J, Cao X H, Zeng Y J, Luo N N, Tang L M and Chen K Q 2023 Appl. Surf. Sci. 612 155914 [34] Ding Z W, Pei Q X, Jiang J W and Zhang Y W 2015 J. Phys. Chem. C 119 16358 [35] Zhu G H, Liu J, Zheng Q Y, Zhang R G, Li D Y, Banerjee D and Cahill D G 2016 Nat. Commun. 7 13211 [36] Lin Y C, Dumcencon D O, Huang Y S and Suenaga K 2014 Nat. Nanotechnol. 9 391 [37] Hedau B, Kang B C and Ha T J 2022 ACS Nano 16 18355 [38] Gao H Q, Hu M A, Ding J F, Xia B L, Yuan G L, Sun H S, Xu Q H, Zhao S Y, Jiang Y W, Wu H, Yuan M, Li J H, Li B X, Zhao J, Rao D W and Xie Y N 2023 Adv. Funct. Mater. 33 2213410 [39] Kresse and Furthmuller 1996 Phys. Rev. B 54 11169 [40] Blochl 1994 Phys. Rev. B 50 17953 [41] Perdew, Burke and Ernzerhof 1996 Phys. Rev. Lett. 77 3865 [42] Li H, Tang Z, Fu J, Dong W H, Zou N, Gong X, Duan W and Xu Y 2024 Phys. Rev. Lett. 132 096401 [43] Togo A 2023 J. Phys. Soc. Jpn. 92 012001 [44] Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747 [45] Ekuma C E, Najmaei S and Dubey M 2019 Mater. Today Commun. 19 383 [46] Liu J, Choi G M and Cahill D G 2014 J. Appl. Phys. 116 233107 [47] Zhang X, Sun D Z, Li Y L, Lee G H, Cui X, Chenet D, You Y M, Heinz T F and Hone J C 2015 ACS Appl. Mater. Interfaces 7 25923 [48] Gu X K, Li B W and Yang R G 2016 J. Appl. Phys. 119 085106 [49] Peng B, Ning Z Y, Zhang H, Shao H Z, Xu Y F, Ni G and Zhu H Y 2016 J. Phys. Chem. C 120 29324 [50] Zhou J, Shin H D, Chen K, Song B, Duncan R A, Xu Q, Maznev A A, Nelson K A and Chen G 2020 Nat. Commun. 11 6040 [51] Togo A and Tanaka I 2015 Scr. Mater. 108 1 [52] Wu Y, Shi W, He C, Li J, Tang C and Ouyang T 2024 Appl. Phys. Lett. 124 202203 [53] Lane N J, Vogel S C, Hug G, Togo A, Chaput L, Hultman L and Barsoum M W 2012 Phys. Rev. B 86 214301 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|