|
Special Issue:
SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas
|
| SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas |
Prev
Next
|
|
|
Tunable thermal conductivity and mechanical properties of metastable silicon by phase engineering |
| Guoshuai Du(杜国帅)1,2,†, Yubing Du(杜玉冰)1,2,†, Jiaxin Ming(明嘉欣)1,3, Zhixi Zhu(朱芷希)4, Jiaohui Yan(闫皎辉)4, Jiayin Li(李嘉荫)1,3, Tiansong Zhang(张天颂)1,2, Lina Yang(杨哩娜)2,§, Ke Jin(靳柯)1,4, and Yabin Chen(陈亚彬)1,2,5,‡ |
1 Advanced Research Institute of Multidisciplinary Sciences (ARIMS), Beijing Institute of Technology, Beijing 100081, China; 2 School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China; 3 School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; 4 School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; 5 Beijing Institute of Technology Chongqing Institute of Microelectronics and Microsystems, Chongqing 400030, China |
|
|
|
|
Abstract The extensive applications of cubic silicon in flexible transistors and infrared detectors are greatly hindered by its intrinsic properties. Metastable silicon phases, such as Si-III, IV, and XII, prepared using extreme pressure methods, provide a unique "genetic bank" with diverse structures and exotic characteristics. However, exploration of their inherent physical properties remains underdeveloped. Herein, we demonstrate the phase engineering strategy to modulate the thermal conductivity and mechanical properties of metastable silicon. The thermal conductivity, obtained via the Raman optothermal approach, exhibits broad tunability across various Si-I, III, XII, and IV phases. The hardness and Young's modulus of Si-IV are significantly greater than those of the Si-III/XII mixture, as confirmed by the nanoindentation technique. Moreover, it was found that pressure-induced structural defects can substantially degrade the thermal and mechanical properties of silicon. This systematic investigation offers a feasible route for designing novel semiconductors and further advancing their desirable applications in advanced nanodevices and mechanical transducers.
|
Received: 13 March 2025
Revised: 08 April 2025
Accepted manuscript online: 23 April 2025
|
|
PACS:
|
64.60.My
|
(Metastable phases)
|
| |
74.25.fc
|
(Electric and thermal conductivity)
|
| |
62.20.-x
|
(Mechanical properties of solids)
|
| |
07.35.+k
|
(High-pressure apparatus; shock tubes; diamond anvil cells)
|
|
| Fund: This project was supported by the National Natural Science Foundation of China (Grant Nos. 52472040, 52072032, and 12090031) and the 173 JCJQ program (Grant No. 2021- JCJQ-JJ-0159). |
Corresponding Authors:
Yabin Chen, Lina Yang
E-mail: chyb0422@bit.edu.cn;yangln@bit.edu.cn
|
Cite this article:
Guoshuai Du(杜国帅), Yubing Du(杜玉冰), Jiaxin Ming(明嘉欣), Zhixi Zhu(朱芷希), Jiaohui Yan(闫皎辉), Jiayin Li(李嘉荫), Tiansong Zhang(张天颂), Lina Yang(杨哩娜), Ke Jin(靳柯), and Yabin Chen(陈亚彬) Tunable thermal conductivity and mechanical properties of metastable silicon by phase engineering 2025 Chin. Phys. B 34 096401
|
[1] Ballif C, Haug F J, Boccard M, Verlinden P J and Hahn G 2022 Nat. Rev. Mater. 7 597 [2] Shekhar S, BogaertsW, Chrostowski L, Bowers J E, Hochberg M, Soref R and Shastri B J 2024 Nat. Commun. 15 751 [3] Barth S, Seifner M S and Maldonado S 2020 Chem. Mater. 32 2703 [4] Franco Gonzalez A, Yang N H and Liu R S 2017 J. Phys. Chem. C 121 27775 [5] Fadaly E M T, Dijkstra A, Suckert J R, et al. 2020 Nature 580 205 [6] Zhang L, Wang Y, Lv J and Ma Y 2017 Nat. Rev. Mater. 2 17005 [7] Mujica A, Rubio A, Munoz A and Needs R 2003 Rev. Mod. Phys. 75 863 [8] Ge G, Rovaris F, Lanzoni D, Barbisan L, Tang X, Miglio L, Marzegalli A, Scalise E and Montalenti F 2024 Acta. Mater. 263 119465 [9] Anzellini S, Wharmby M T, Miozzi F, Kleppe A, Daisenberger D and Wilhelm H 2019 Sci. Rep. 9 15537 [10] Wippermann S, He Y, Vörös M and Galli G 2016 Appl. Phys. Rev. 3 040807 [11] Kailer A, Gogotsi Y G and Nickel K G 1997 J. Appl. Phys. 81 3057 [12] Piltz R, Maclean J, Clark S, Ackland G, Hatton P and Crain J 1995 Phys. Rev. B 52 4072 [13] Shiell T B, Zhu L, Cook B A, Bradby J E, Mcculloch D G and Strobel T A 2021 Phys. Rev. Lett. 126 215701 [14] Wong S, Johnson B C, Haberl B, Mujica A, Mccallum J C, Williams J S and Bradby J E 2019 J. Appl. Phys. 126 105901 [15] Zhang H, Liu H, Wei K, Kurakevych O O, Le Godec Y, Liu Z, Martin J, Guerrette M, Nolas G S and Strobel T A 2017 Phys. Rev. Lett. 118 146601 [16] Ci P, Sun M, Upadhyaya M, Song H, Jin L, Sun B, Jones M R, Ager J W, Aksamija Z and Wu J 2022 Phys. Rev. Lett. 128 085901 [17] Zhou Y, Dong Z Y, HsiehWP, Goncharov A F and Chen X J 2022 Nat. Rev. Phys. 4 319 [18] Rao Y, Zhao C Y and Ju S 2022 Appl. Phys. Lett. 120 163901 [19] Harish S, Tabara M, Ikoma Y, Horita Z, Takata Y, Cahill D G and Kohno M 2014 Nanoscale Res. Lett. 9 326 [20] Raya-Moreno M, Aramberri H, Seijas-Bellido J A, Cartoix‘a X and Rurali R 2017 Appl. Phys. Lett. 111 032107 [21] Liang T, Xiong L, Lou H, Lan F, Zhang J, Liu Y, Li D, Zeng Q and Zeng Z 2022 Scripta Mater. 220 114936 [22] Kim H S and Bush M B 1999 Nanostruct. Mater. 11 361 [23] Prescher C and Prakapenka V B 2015 High Pressure Res. 35 223 [24] Toby B H and Von Dreele R B 2013 J. Appl. Crystallogr. 46 544 [25] Du Y, Du G, Dong H, Li J, Han W, Chen B and Chen Y 2024 J. Phys. Chem. C 128 4818 [26] Balandin A A, Ghosh S, BaoW, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902 [27] Gan Y L, Wang L, Su X Q, Xu S W, Shen X and Wang R P 2014 J. Raman Spectrosc. 45 377 [28] Johnson B C, Haberl B, Bradby J E, Mccallum J C and Williams J S 2011 Phys. Rev. B 83 235205 [29] Zhou J, Liao B and Chen G 2016 Semicond. Sci. Technol. 31 043001 [30] Abeles B 1963 Phys. Rev. 131 1906 [31] Dixit S and Shukla A K 2018 J. Appl. Phys. 123 224301 [32] Ikoma Y, Hayano K, Edalati K, Saito K, Guo Q and Horita Z 2012 Appl. Phys. Lett. 101 121908 [33] Abdel-Aal H A, Reyes Y, Patten J A and Dong L 2006 Mater. Charact. 57 281 [34] Cao F and He Z 2022 Int. J. Mod. Phys. B 36 2240050 [35] Glassbrenner C J and Slack G A 1964 Phys. Rev. 134 A1058 [36] Shanks H R, Maycock P D, Sidles P H and Danielson G C 1963 Phys. Rev. 130 1743 [37] Pfeifer T W, Tomko J A, Hoglund E, Scott E A, Hattar K, Huynh K, Liao M, Goorsky M and Hopkins P E 2022 J. Appl. Phys. 132 075112 [38] Cahill D G, Braun P V, Chen G, Clarke D R, Fan S, Goodson K E, Keblinski P, King W P, Mahan G D, Majumdar A, Maris H J, Phillpot S R, Pop E and Shi L 2014 Appl. Phys. Rev. 1 011305 [39] Hiroshi Wada H W and Takeshi Kamijoh T K 1996 Jpn. J. Appl. Phys. 35 L648 [40] Zink B L, Pietri R and Hellman F 2006 Phys. Rev. Lett. 96 055902 [41] Jeong C, Datta S and Lundstrom M 2012 J. Appl. Phys. 111 093708 [42] Li X and Bhushan B 2002 Mater. Charact. 48 11 [43] Pharr G M, Oliver W C and Clarke D R 1990 J. Electron. Mater. 19 881 [44] Ronald E M and Vijay B S 2000 Nanotechnol. 11 139 [45] Sadeghian H, Yang C K, Goosen J F L, Bossche A, Staufer U, French P J and Van Keulen F 2010 J. Micromech. Microeng. 20 064012 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|