Special Issue:
SPECIAL TOPIC — Valleytronics
|
|
|
Anomalous valley Hall effect in two-dimensional valleytronic materials |
Hongxin Chen(陈洪欣)1, Xiaobo Yuan(原晓波)1, and Junfeng Ren(任俊峰)1,2,† |
1 School of Physics and Electronics, Shandong Normal University, Jinan 250358, China; 2 Shandong Provincial Engineering and Technical Center of Light Manipulations & Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250358, China |
|
|
Abstract The anomalous valley Hall effect (AVHE) can be used to explore and utilize valley degrees of freedom in materials, which has potential applications in fields such as information storage, quantum computing and optoelectronics. AVHE exists in two-dimensional (2D) materials possessing valley polarization (VP), and such 2D materials usually belong to the hexagonal honeycomb lattice. Therefore, it is necessary to achieve valleytronic materials with VP that are more readily to be synthesized and applicated experimentally. In this topical review, we introduce recent developments on realizing VP as well as AVHE through different methods, i.e., doping transition metal atoms, building ferrovalley heterostructures and searching for ferrovalley materials. Moreover, 2D ferrovalley systems under external modulation are also discussed. 2D valleytronic materials with AVHE demonstrate excellent performance and potential applications, which offer the possibility of realizing novel low-energy-consuming devices, facilitating further development of device technology, realizing miniaturization and enhancing functionality of them.
|
Received: 07 October 2023
Revised: 21 December 2023
Accepted manuscript online: 09 January 2024
|
PACS:
|
73.20.Hb
|
(Impurity and defect levels; energy states of adsorbed species)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
75.50.Pp
|
(Magnetic semiconductors)
|
|
75.76.+j
|
(Spin transport effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274264 and 11674197), the Natural Science Foundation of Shandong Province of China (Grant Nos. ZR2022MA039 and ZR2021MA105), and the Qing-Chuang Science and Technology Plan of Shandong Province of China (Grant No. 2019KJJ014). |
Corresponding Authors:
Junfeng Ren
E-mail: renjf@sdnu.edu.cn
|
Cite this article:
Hongxin Chen(陈洪欣), Xiaobo Yuan(原晓波), and Junfeng Ren(任俊峰) Anomalous valley Hall effect in two-dimensional valleytronic materials 2024 Chin. Phys. B 33 047304
|
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2016 Physics 45 505 [31] Tong W Y, Gong S J, Wan X and Duan C G 2016 Nat. Commun. 7 13612 [32] Akhmerov A R and Beenakker C W J 2007 Phys. Rev. Lett. 98 157003 [33] Takashina K, Ono Y, Fujiwara A, Takahashi Y and Hirayama Y 2006 Phys. Rev. Lett. 96 236801 [34] Bishop N C, Padmanabhan M, Vakili K, Shkolnikov Y P, De Poortere E P and Shayegan M 2007 Phys. Rev. Lett. 98 266404 [35] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490 [36] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494 [37] Sie E J, McIver J W, Lee Y H, Fu L, Kong J and Gedik N 2015 Nat. Mater. 14 290 [38] Li Y, Ludwig J, Low T, et al. 2014 Phys. Rev. Lett. 113 266804 [39] Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A and Imamoglu A 2015 Nat. Phys. 11 141 [40] Aivazian G, Gong Z, Jones A M, Chu R L, Yan J, Mandrus D G, Zhang C, Cobden D, Yao W and Xu X 2015 Nat. Phys. 11 148 [41] MacNeill D, Heikes C, Mak K F, Anderson Z, Kormányos A, Zólyomi V, Park J and Ralph D C 2015 Phys. Rev. Lett. 114 037401 [42] Cheng Y C, Zhang Q Y and Schwingenschlögl U 2014 Phys. Rev. B 89 155429 [43] Chen X, Zhong L S, Li X and Qi J S 2017 Nanoscale 9 2188 [44] Peng R, Ma Y, Zhang S, Huang B and Dai Y 2018 J. Phys. Chem. Lett. 9 3612 [45] Feng S, Cong C, Konabe S, et al. 2019 Small 15 1805503 [46] Qi J, Li X, Niu Q and Feng J 2015 Phys. Rev. B 92 121403 [47] Zhang Q, Yang S A, Mi W, Cheng Y and Schwingenschlögl U 2016 Adv. Mater. 28 959 [48] Norden T, Zhao C, Zhang P, Sabirianov R, Petrou A and Zeng H 2019 Nat. Commun. 10 4163 [49] Zhang Z, Ni X, Huang H, Hu L and Liu F 2019 Phys. Rev. B 99 115441 [50] Zollner K, Junior P E F and Fabian J 2019 Phys. Rev. B 100 085128 [51] Zhai B, Du J, Shen C, Wang T, Peng Y, Zhang Q and Xia C 2019 Phys. Rev. B 100 195307 [52] Zhang K, Wang L and Wu X 2019 Nanoscale 11 19536 [53] Hu T, Zhao G, Gao H, Wu Y, Hong J, Stroppa A and Ren W 2020 Phys. Rev. B 101 125401 [54] Lei C, Ma Y, Zhang T, Xu X, Huang B and Dai Y 2020 New J. Phys. 22 033002 [55] Zhang H, Yang W, Ning Y and Xu X 2020 Phys. Rev. B 101 205404 [56] Cheng Y C, Zhu Z Y, Mi W B, Guo Z B and Schwingenschlögl U 2013 Phys. Rev. B 87 100401 [57] Er D, Ye H, Frey N C, et al. 2018 Nano Lett. 18 3943 [58] Xia C X, Xiong W Q, Du J, Wang T X, Peng Y T and Li J B 2018 Phys. Rev. B 98 165424 [59] Zhao X W, Qiu B, Hu G C, Yue W W, Ren J F and Yuan X B 2019 Appl. Surf. Sci. 490 172 [60] Zhao X W, Li Y, Liang R D, Hu G C, Yuan X B and Ren J F 2020 Appl. Surf. Sci. 504 144367 [61] Li Q, Zhao X, Deng L, et al. 2020 ACS Nano 14 4636 [62] Zhou J, Lin J, Sims H, et al. 2020 Adv. Mater. 32 1906536 [63] Ma X, Zhang J, Lai J, Zhang M, Zheng J, Wu S, Hu X, Wang Q, Gan X, Sun D and Liu J 2021 2$D Mater. 8 035031 [64] Zhang T, Ma Y, Xu X, Lei C, Huang B and Dai Y 2020 J. Phys. Chem. C 124 20598 [65] Yang H X, Hallal A, Terrade D, Waintal X, Roche S and Chshiev M 2013 Phys. Rev. Lett. 110 046603 [66] Ye Y, Xiao J, Wang H, Ye Z, Zhu H, Zhao M, Wang Y, Zhao J, Yin X and Zhang X 2016 Nat. Nanotechnol. 11 598 [67] Song Y, Li D, Mi W B, Wang X C and Cheng Y C 2016 J. Phys. Chem. C 120 5613 [68] Liang X, Deng L, Huang F, Tang T, Wang C, Zhu Y, Qin J, Zhang Y, Peng B and Bi L 2017 Nanoscale 9 9502 [69] Xu L, Yang M, Shen L, Zhou J, Zhu T and Feng Y P 2018 Phys. Rev. B 97 041405 [70] Yu W, Li J, Herng T S, et al. 2019 Adv. Mater. 31 1903779 [71] Dong X J, You J Y, Gu B and Su G 2019 Phys. Rev. Appl. 12 014020 [72] Zhong D, Seyler K L, Linpeng X, et al. 2017 Sci. Adv. 3 e1603113 [73] Seyler K L, Zhong D, Huang B, et al. 2018 Nano Lett. 18 3823 [74] Huang B, Clark G, Navarro-Moratalla E, et al. 2017 Nature 546 270 [75] Ma Y, Kuc A and Heine T 2017 J. Am. Chem. Soc. 139 11694 [76] Ma Y, Kou L, Du A, Huang B, Dai Y and Heine T 2018 Phys. Rev. B 97 035444 [77] Xu X, Ma Y, Zhang T, Lei C, Huang B and Dai Y 2019 J. Phys. Chem. Lett. 10 4535 [78] Guo J T, Zhao X W, Hu G C, Ren J F and Yuan X B 2021 Appl. Surf. Sci. 558 149604 [79] Zhao X, Liu F, Ren J and Qu F 2021 Phys. Rev. B 104 085119 [80] Zhong D Y, Drzewinski A, Zhou X H, et al. 2020 J. Phys. Chem. C 124 9416 [81] Yamanaka S, Itoh K, Fukuoka H and Yasukawa M 2000 Inorg. Chem. 39 806 [82] Sun R J, Lu J J, Zhao X W, Hu G C, Yuan X B and Ren J F 2022 Appl. Phys. Lett. 120 063103 [83] Marfoua B and Hong J 2022 Commun. Phys. 5 266 [84] Qi Y, Yao C and Zhao J 2023 Phys. Rev. B 108 125304 [85] Wen T, Zhang W, Liu S, Hu A, Zhao J, Ye Y, Chen Y, Qiu C W, Gong Q and Lu G 2020 Sci. Adv. 6 eaao0019 [86] Wang X, Li D, Li Z, Wu C, Che C M, Chen G and Cui X 2021 ACS Nano 15 16236 [87] You J, Pan J, Shang S L, et al. 2022 Nano Lett. 22 10167 [88] Hu H, Tong W Y, Shen Y H, Wan X and Duan C G 2020 NPJ Comput. Mater. 6 129 [89] Peng R, Ma Y, Xu X, He Z, Huang B and Dai Y 2020 Phys. Rev. B 102 035412 [90] Cheng H X, Zhou J, Ji W, Zhang Y N and Feng Y P 2021 Phys. Rev. B 103 125121 [91] Zang Y, Ma Y, Peng R, Wang H, Huang B and Dai Y 2021 Nano Res. 14 834 [92] Sun R J, Liu R, Lu J J, Zhao X W, Hu G C, Yuan X B and Ren J F 2022 Phys. Rev. B 105 235416 [93] Whangbo M H, Gordon E E, Xiang H, Koo H J and Lee C 2015 Acc. Chem. Res. 48 3080 [94] Hu H, Tong W Y, Shen Y H and Duan C G 2020 J. Mater. Chem. C 8 8098 [95] Jiang P, Kang L L, Hao H, Zheng X H, Zeng Z and Sanvito S 2020 Phys. Rev. B 102 245417 [96] Lei C G, Xu X L, Zhang T, Huang B B, Dai Y and Ma Y D 2021 J. Phys. Chem. C 125 2802 [97] Zhai B X, Cheng R Q, Yao W, Yin L, Shen C H, Xia C X and He J 2021 Phys. Rev. B 103 214114 [98] Belianinov A, He Q, Dziaugys A, et al. 2015 Nano Lett. 15 3808 [99] Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z and Zhu W 2017 Nat. Commun. 8 14956 [100] Xiao C, Wang F, Yang S A, Lu Y, Feng Y and Zhang S 2018 Adv. Funct. Mater. 28 1707383 [101] Wu M 2021 ACS Nano 15 9229 [102] Lei C, Li X, Ma Y and Qian Z 2023 Phys. Rev. B 108 155431 [103] Zheng J D, Zhao Y F, Tan Y F, Guan Z, Zhong N, Yue F Y, Xiang P H and Duan C G 2022 J. Appl. Phys. 132 120902 [104] Zhou J, Sun Q and Jena P 2017 Phys. Rev. Lett. 119 046403 [105] Li Y, Liu Y, Wang C, Wang J, Xu Y and Duan W 2018 Phys. Rev. B 98 201407 [106] Liu L, Zhao B, Zhang J, Bao H, Huan H, Xue Y, Li Y and Yang Z 2021 Phys. Rev. B 104 245414 [107] Barik R K and Singh A K 2021 Chem. Mater. 33 6311 [108] Zhan F, Zheng B, Xiao X, Fan J, Wu X and Wang R 2022 Phys. Rev. B 105 035131 [109] Zhan F, Ning Z, Gan L, Zheng B, Fan J and Wang R 2022 Phys. Rev. B 105 L081115 [110] Feng X, Xu X, He Z, Peng R, Dai Y, Huang B and Ma Y 2021 Phys. Rev. B 104 075421 [111] Li J, Yao Q, Wu L, Hu Z, Gao B, Wan X and Liu Q 2022 Nat. Commun. 13 919 [112] Chen H, Liu R, Lu J, Zhao X, Hu G, Ren J and Yuan X 2022 J. Phys. Chem. Lett. 13 10297 [113] Pamuk B, Mauri F and Calandra M 2017 Phys. Rev. B 96 024518 [114] Liu J, Li X B, Wang D, Liu H, Peng P and Liu L M 2014 J. Mater. Chem. A 2 6755 [115] Osanloo M R, Saadat A, Van de Put M L, Laturia A and Vandenberghe W G 2022 Nanoscale 14 157 [116] Sun R J, Liu R, Lu J J, Zhao X W, Hu G C, Ren J F and Yuan X B 2023 Appl. Phys. Lett. 122 022404 [117] Huan H, Xue Y, Zhao B, Gao G, Bao H and Yang Z 2021 Phys. Rev. B 104 165427 [118] Cui Q, Zhu Y, Liang J, Cui P and Yang H 2021 Phys. Rev. B 103 085421 [119] Naguib M, Mochalin V N, Barsoum M W and Gogotsi Y 2014 Adv. Mater. 26 992 [120] Wei Y, Zhang P, Soomro R A, Zhu Q and Xu B 2021 Adv. Mater. 33 2103148 [121] Naguib M, Barsoum M W and Gogotsi Y 2021 Adv. Mater. 33 2103393 [122] Zhou C, Zhao X, Xiong Y, Tang Y, Ma X, Tao Q, Sun C and Xu W A 2022 Eur. Polym. J. 167 111063 [123] Dadashi Firouzjaei M, Karimiziarani M, Moradkhani H, Elliott M and Anasori B 2022 Mater. Today Adv. 13 100202 [124] Feng X, He Z, Peng R, Dai Y, Huang B and Ma Y 2022 Phys. Rev. Mater. 6 044001 [125] Lu J J, Liu R, Yue F F, Zhao X W, Hu G C, Yuan X B and Ren J F 2023 J. Phys. Chem. Lett. 14 132 [126] Xu Y, Wang S, Yu S, Wang X, Huang B, Dai Y and Wei W 2022 J. Phys. Chem. Lett. 13 11543 [127] Huang B, Liu W Y, Wu X C, Li S Z, Li H, Yang Z and Zhang W B 2023 Phys. Rev. B 107 045423 [128] Wu Y, Tong J, Deng L, Luo F, Tian F, Qin G and Zhang X 2023 Acta Mater. 246 118731 [129] Jia K, Dong X J, Li S S, Ji W X and Zhang C W 2023 Nanoscale 15 8395 [130] Ma Y, Wu Y, Tong J, Deng L, Yin X, Zhou L, Han X, Tian F and Zhang X 2023 Nanoscale 15 8278 [131] Tong W Y and Duan C G 2017 NPJ Quantum Mater. 2 47 [132] Liu X, Pyatakov A P and Ren W 2020 Phys. Rev. Lett. 125 247601 [133] Zhang T, Xu X, Huang B, Dai Y and Ma Y 2022 NPJ Comput Mater. 8 64 [134] Wu Y, Tong J, Deng L, Luo F, Tian F, Qin G and Zhang X 2023 Nano Lett. 23 6226 [135] Li C L, Wang N B, Hu G C, Yuan X B, Ren J F and Zhao X W 2023 J. Phys. D:Appl. Phys. 56 135301 [136] Li C, Chen H, Hu G, Yuan X, Ren J and Zhao X 2023 Appl. Phys. Lett. 123 243101 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|