|
|
|
Superconductivity and band topology of double-layer honeycomb structure M2N2 (M = Nb, Ta) |
| Jin-Han Tan(谭锦函)1, Na Jiao(焦娜)1, Meng-Meng Zheng(郑萌萌)1,†, Ping Zhang(张平)1,2, and Hong-Yan Lu(路洪艳)1,‡ |
1 School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China; 2 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China |
|
|
|
|
Abstract Two-dimensional double-layer honeycomb (DLHC) materials are known for their diverse physical properties, but superconductivity has been a notably absent characteristic in this structure. We address this gap by investigating $M_{2}$N$_{2}$ ($M = {\rm Nb}$, Ta) with DLHC structure using first-principles calculations. Our results show that $M_{2}$N$_{2}$ are stable and metallic, exhibiting superconducting behavior. Specifically, Nb$_{2}$N$_{2}$ and Ta$_{2}$N$_{2}$ display superconducting transition temperatures of 6.8 K and 8.8 K, respectively. Their electron-phonon coupling is predominantly driven by the coupling between metal d-orbitals and low-frequency metal-dominated vibration modes. Interestingly, two compounds also exhibit non-trivial band topology. Thus, $M_{2}$N$_{2}$ are promising platforms for studying the interplay between topology and superconductivity and fill the gap in superconductivity research for DLHC materials.
|
Received: 16 June 2025
Revised: 07 July 2025
Accepted manuscript online: 10 July 2025
|
|
PACS:
|
74.20.Pq
|
(Electronic structure calculations)
|
| |
74.25.-q
|
(Properties of superconductors)
|
| |
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
| |
74.78.-w
|
(Superconducting films and low-dimensional structures)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074213 and 11574108), the National Key R&D Program of China (Grant No. 2022YFA1403103), the Major Basic Program of Natural Science Foundation of Shandong Province (Grant No. ZR2021ZD01), the Natural Science Foundation of Shandong Province (Grant No. ZR2023MA082), and the Project of Introduction and Cultivation for Young Innovative Talents in Colleges and Universities of Shandong Province. |
Corresponding Authors:
Meng-Meng Zheng, Hong-Yan Lu
E-mail: qfzhmm@163.com;hylu@qfnu.edu.cn
|
Cite this article:
Jin-Han Tan(谭锦函), Na Jiao(焦娜), Meng-Meng Zheng(郑萌萌), Ping Zhang(张平), and Hong-Yan Lu(路洪艳) Superconductivity and band topology of double-layer honeycomb structure M2N2 (M = Nb, Ta) 2025 Chin. Phys. B 34 097402
|
[1] Huang Z S, Zhang W X and Zhang W L 2016 Materials 9 716 [2] Faraji M, Bafekry A, Fadlallah M M, Jappor H R, Nguyen C V and Ghergherehchi M 2022 Appl. Surf. Sci 590 152998 [3] Muhsen Almayyali A O, Muhsen H O, Merdan M, Obeid M M and Jappor H R 2021 Physica E 126 114487 [4] Yang L, Li Y P, Liu H D, Jiao N, Ni M Y, Lu H Y, Zhang P and Ting C S 2023 Chin. Phys. Lett. 40 017402 [5] Xia F, Mueller T, Lin Y m, Valdes-Garcia A and Avouris P 2009 Nat. Nanotechnol. 4 839 [6] Chen C, Mei W, Wang C, Yang Z, Chen X, Chen X and Liu T 2020 J. Alloys Compd. 826 154122 [7] Bafekry A, Yagmurcukardes M, Akgenc B, Ghergherehchi M and Nguyen C V 2020 J. Phys. D 53 355106 [8] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [9] Lin Y, Williams T V and Connell J W 2010 J. Phys. Chem. Lett. 1 277 [10] Zhang K, Feng Y,Wang F, Yang Z andWang J 2017 J. Mater. Chem. C 5 11992 [11] Li L H and Chen Y 2016 Adv. Funct. Mater. 26 2594 [12] Andrew R C, Mapasha R E, Ukpong A M and Chetty N 2012 Phys. Rev. B 85 125428 [13] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501 [14] Derivaz M, Dentel D, Stephan R, Hanf M C, Mehdaoui A, Sonnet P and Pirri C 2015 Nano Lett. 15 2510 [15] Kamal C and Ezawa M 2015 Phys. Rev. B 91 085423 [16] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372 [17] Xu Y, Yan B, Zhang H J, Wang J, Xu G, Tang P, Duan W and Zhang S C 2013 Phys. Rev. Lett. 111 136804 [18] Tan C, Qi X, Huang X, Yang J, Zheng B, An Z, Chen R, Wei J, Tang B Z, Huang W and Zhang H 2014 Adv. Mater. 26 1735 [19] Komsa H P and Krasheninnikov A V 2012 J. Phys. Chem. Lett. 3 3652 [20] Geng D and Yang H Y 2018 Adv. Mater. 30 1800865 [21] Lei T, Liu C, Zhao J L, Li J M, Li Y P, Wang J O, Wu R, Qian H J, Wang H Q and Ibrahim K 2016 J. Appl. Phys. 119 015302 [22] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033 [23] Molle A, Goldberger J, Houssa M, Xu Y, Zhang S C and Akinwande D 2017 Nat. Mater. 16 163 [24] Son S Y, Lee D, Hur J and Kim I T 2017 J. Nanosci. Nanotechnol. 17 7575 [25] Johnson M, Bennett B R, Yang M J, Miller M M and Shanabrook B V 1997 Appl. Phys. Lett. 71 974 [26] Qin L, Zhang Z H, Jiang Z, Fan K, Zhang W H, Tang Q Y, Xia H N, Meng F, Zhang Q, Gu L, West D, Zhang S and Fu Y S 2021 ACS Nano 15 8184 [27] Freeman C L, Claeyssens F, Allan N L and Harding J H 2006 Phys. Rev. Lett. 96 066102 [28] Zhuang H L, Singh A K and Hennig R G 2013 Phys. Rev. B 87 165415 [29] Zheng H, Li X B, Chen N K, Xie S Y, TianWQ, Chen Y, Xia H, Zhang S B and Sun H B 2015 Phys. Rev. B 92 115307 [30] Lucking M C, XieW, Choe D H,West D, Lu T M and Zhang S B 2018 Phys. Rev. Lett. 120 086101 [31] Mustonen K, Hofer C, Kotrusz P, Markevich A, Hulman M, Mangler C, Susi T, Pennycook T J, Hricovini K, Richter C, Meyer J C, Kotakoski J and Skákalová V 2022 Adv. Mater. 34 2106922 [32] Andryushechkin B V and Pavlova T V 2022 The Journal of Chemical Physics 156 164702 [33] Jiang Z, Li Y, Zhang S and Duan W 2018 Phys. Rev. B 98 081408 [34] Liu C, Hughes T L, Qi X L, Wang K and Zhang S C 2008 Phys. Rev. Lett. 100 236601 [35] Knez I, Du R R and Sullivan G 2011 Phys. Rev. Lett. 107 136603 [36] Yi S, Liu G, Wan H, Liu Z, Hu W and Deng H 2021 Appl. Surf. Sci. 550 149392 [37] Bafekry A, Faraji M, Fazeli S, H Khan S, Fadlallah M M, Stampfl C, Ghergherehchi M, Chang G S and Shokri B 2024 J. Phys. Chem. C 128 8016 [38] Jiang H, Zheng L, Liu Z and Wang X 2020 InfoMat 2 1077 [39] Duong D L, Yun S J and Lee Y H 2017 ACS Nano 11 11803 [40] Yi S, Liu G, Liu Z, HuWand Deng H 2020 J. Phys. Chem. C 124 2978 [41] Bafekry A, Faraji M, Fadlallah M M, Jappor H R, Karbasizadeh S, Ghergherehchi M, Sarsari I A and Ziabari A A 2021 Phys. Chem. Chem. Phys. 23 18752 [42] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 [43] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 [44] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [45] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502 [46] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [47] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [48] Wu Q, Zhang S, Song H F, TroyerMand Soluyanov A A 2018 Comput. Phys. Commun. 224 405 [49] Pizzi G, Vitale V, Arita R, Blügel S, Freimuth F, Géranton G, Gibertini M, Gresch D, Johnson C, Koretsune T, Ibañez-Azpiroz J, Lee H, Lihm J M, Marchand D, Marrazzo A, Mokrousov Y, Mustafa J I, Nohara Y, Nomura Y, Paulatto L, Poncé S, Ponweiser T, Qiao J, Thöle F, Tsirkin S S, Wierzbowska M, Marzari N, Vanderbilt D, Souza I, Mostofi A A and Yates J R 2020 J. Phys.: Condens. Matter 32 165902 [50] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419 [51] Yang L M, Bačić V, Popov I A, Boldyrev A I, Heine T, Frauenheim T and Ganz E 2015 J. Am. Chem. Soc. 137 2757 [52] Feng B, Fu B, Kasamatsu S, Ito S, Cheng P, Liu C C, Feng Y, Wu S, Mahatha S K, Sheverdyaeva P, Moras P, Arita M, Sugino O, Chiang T C, Shimada K, Miyamoto K, Okuda T, Wu K, Chen L, Yao Y and Matsuda I 2017 Nat. Commun. 8 1007 [53] Bafekry A, Faraji M, Fadlallah M M, Jappor H R, Karbasizadeh S, Ghergherehchi M, Sarsari I A and Ziabari A A 2021 Phys. Chem. Chem. Phys. 23 18752 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|