Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 086110    DOI: 10.1088/1674-1056/add905
Special Issue: SPECIAL TOPIC — Artificial intelligence and smart materials innovation: From fundamentals to applications
SPECIAL TOPIC — Artificial intelligence and smart materials innovation: From fundamentals to applications Prev   Next  

Hyperparameter optimization and force error correction of neuroevolution potential for predicting thermal conductivity of wurtzite GaN

Zhuo Chen(陈卓)1,2, Yuejin Yuan(袁越锦)1, Wenyang Ding(丁文扬)3, Shouhang Li(李寿航)4, Meng An(安盟)3,†, and Gang Zhang(张刚)2,‡
1 College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an 710049, China;
2 Yangtze Delta Region, Academy of Beijing Institute of Technology, Jiaxing 314019, China;
3 Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan;
4 Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France
Abstract  As a representative of wide-bandgap semiconductors, wurtzite gallium nitride (GaN) has been widely utilized in high-power devices due to its high breakdown voltage and low specific on-resistance. Accurate prediction of wurtzite GaN's thermal conductivity is a prerequisite for designing effective thermal management systems for electronic applications. Machine learning-driven molecular dynamics simulation offers a promising approach to predicting the thermal conductivity of large-scale systems without requiring predefined parameters. However, these methods often underestimate the thermal conductivity of materials with inherently high thermal conductivity due to the large predicted force error compared with first-principles calculations, posing a critical challenge for their broader application. In this study, we successfully developed a neuroevolution potential for wurtzite GaN and accurately predicted its thermal conductivity, 259$\pm$6 W/(m$\cdot$K) at room temperature, achieving excellent agreement with reported experimental measurements. The hyperparameters of the neuroevolution potential (NEP) were optimized based on a systematic analysis of reproduced energy and force, structural features, and computational efficiency. Furthermore, a force error correction method was implemented, effectively reducing the error caused by the additional force noise in the Langevin thermostat by extrapolating to the zero-force error limit. This study provides valuable insights and holds significant implications for advancing efficient thermal management technologies in wide-bandgap semiconductor devices.
Keywords:  machine learning potential      molecular dynamics      thermal conductivity      gallium nitride  
Received:  04 March 2025      Revised:  05 May 2025      Accepted manuscript online:  15 May 2025
PACS:  61.82.Fk (Semiconductors)  
  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
  52.65.Yy (Molecular dynamics methods)  
  74.25.fc (Electric and thermal conductivity)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 52376063 and 52306116), the Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology Prevention Fund (Grant No. 2022-K03), and the China Postdoctoral Science Foundation (Grant No. 2023MD744223).
Corresponding Authors:  Meng An, Gang Zhang     E-mail:  anmeng@sust.edu.cn;gangzhang2006@gmail.com

Cite this article: 

Zhuo Chen(陈卓), Yuejin Yuan(袁越锦), Wenyang Ding(丁文扬), Shouhang Li(李寿航), Meng An(安盟), and Gang Zhang(张刚) Hyperparameter optimization and force error correction of neuroevolution potential for predicting thermal conductivity of wurtzite GaN 2025 Chin. Phys. B 34 086110

[1] Kozak J P, Zhang R, Porter M, Song Q, Liu J, Wang B, Wang R, Saito W and Zhang Y 2023 IEEE Trans. Power Electron. 38 8442
[2] Hoo Teo K, Zhang Y H, Chowdhury N, Rakheja S, Ma R, Xie Q Y, Yagyu E, Yamanaka K, Li K X and Palacios T 2021 J. Appl. Phys. 130 160902
[3] Qin Y, Albano B, Spencer J, Lundh J S,Wang B Y, Buttay C, Tadjer M, DiMarino C and Zhang Y H 2023 J. Phys. D: Appl. Phys. 56 093001
[4] Abdullah M F, Mat Hussin M R, Ismail M A and Wan Sabli S K 2023 Microelectron. Eng. 273 111958
[5] Lindsay L, Broido D A and Reinecke T L 2012 Phys. Rev. Lett. 109 095901
[6] Togo A, Chaput L and Tanaka I 2015 Phys. Rev. B 91 094306
[7] Tang D S, Qin G Z, HuMand Cao B Y 2020 J. Appl. Phys. 127 035102
[8] Mion C, Muth J F, Preble E A and Hanser D 2006 Appl. Phys. Lett. 89 092123
[9] Simon R B, Anaya J and Kuball M 2014 Appl. Phys. Lett. 105 202105
[10] Rounds R, Sarkar B, Sochacki T, Bockowski M, Imanishi M, Mori Y, Kirste R, Collazo R and Sitar Z 2018 J. Appl. Phys. 124 105106
[11] Zheng Q Y, Li C H, Rai A, Leach J H, Broido D A and Cahill D G 2019 Phys. Rev. Mater. 3 014601
[12] Wu R K, Hu R and Luo X B 2016 J. Appl. Phys. 119 145706
[13] Sun J S, Li S H, Tong Z, Shao C, Chen X C, Liu Q Q, Xiong Y C, An M and Liu X J 2024 Phys. Rev. B 109 134308
[14] Zhou X W, Aubry S, Jones R E, Greenstein A and Schelling P K 2009 Phys. Rev. B 79 115201
[15] Liang Z, Jain A, McGaughey A J H and Keblinski P 2015 J. Appl. Phys. 118 125104
[16] Korotaev P, Novoselov I, Yanilkin A and Shapeev A 2019 Phys. Rev. B 100 144308
[17] Qian X, Peng S, Li X, Wei Y and Yang R 2019 Mater. Today Phys. 10 100140
[18] Fan Z, Zeng Z, Zhang C, Wang Y, Song K, Dong H, Chen Y and Ala- Nissila T 2021 Phys. Rev. B 104 104309
[19] Fan Z Y, Wang Y Z, Ying P H, Song K K, Wang J J, Wang Y, Zeng Z Z, Xu K, Lindgren E, Rahm J M, Gabourie A J, Liu J, Dong H K, Wu J Y, Chen Y, Zhong Z, Sun J, Erhart P, Su Y and Ala-Nissila T 2022 J. Chem. Phys. 157 114801
[20] Bussi G and Parrinello M 2007 Phys. Rev. E 75 056707
[21] Kovács D P, Batatia I, Arany E S and Csányi G 2023 J. Chem. Phys. 159 044118
[22] Hjorth Larsen A, Jørgen Mortensen J, Blomqvist J, et al. 2017 J. Phys.: Condens. Matter 29 273002
[23] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[24] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[25] Momma K and Izumi F 2008 J. Appl. Crystallogr. 41 653
[26] Song K K, Zhao R, Liu J H, et al. 2024 Nat. Commun. 15 10208
[27] Bernetti M and Bussi G 2020 J. Chem. Phys. 153 114107
[28] Bussi G, Donadio D and Parrinello M 2007 J. Chem. Phys. 126 014101
[29] Fan Z Y, Dong H K, Harju A and Ala-Nissila T 2019 Phys. Rev. B 99 064308
[30] Wang Y, Fan Z, Qian P, Caro M A and Ala-Nissila T 2023 Phys. Rev. B 107 054303
[31] Lv W and Henry A 2016 New J. Phys. 18 013028
[32] Sääskilahti K, Oksanen J, Tulkki J, McGaughey A J H and Volz S 2016 AIP Adv. 6 121904
[33] Fan Z A O, Hirvonen P, Pereira L F C, Ervasti M M, Elder K R, Donadio D A O, Harju A and Ala-Nissila T 2017 Nano Lett. 17 5919
[34] Ying P H and Fan Z Y 2024 J. Phys.: Condens. Matter 36 125901
[35] Ruf T, Serrano J, Cardona M, Pavone P, Pabst M, Krisch M, D’Astuto M, Suski T, Grzegory I and Leszczynski M 2001 Phys. Rev. Lett. 86 906
[36] Zhang H G, Gu X K, Fan Z Y and Bao H 2023 Phys. Rev. B 108 045422
[37] Liang T, Ying P H, Xu K, Ye Z Q, Ling C, Fan Z Y and Xu J B 2023 Phys. Rev. B 108 184203
[38] Xue J, Li F Y, Fan A R, Ma W G and Zhang X 2024 Int. J. Heat Mass Transfer 233 126049
[39] Wu X G, Zhou W J, Dong H K, Ying P H, Wang Y Z, Song B, Fan Z Y and Xiong S Y 2024 J. Chem. Phys. 161 014103
[40] Zhou W J, Liang N J, Wu X G, Xiong S Y, Fan Z Y and Song B 2025 Mater. Today Phys. 50 101638
[1] Thermal transport properties of 2D narrow bandgap semiconductor Ca3N2, Ba3P2, and Ba3As2: Machine learning potential study
Wenlong Li(李文龙), Yu Liu(刘余), Zhendong Li(李振东), Pei Zhang(张培), Xinghua Li(李兴华), and Tao Ouyang(欧阳滔). Chin. Phys. B, 2025, 34(9): 096302.
[2] Preparation of high-performance Cu2Se thermoelectric materials by the KCl flux method and research on thermoelectric transport performance
Yonggui Tao(陶永贵), Chisheng Deng(邓池升), Jicheng Li(李吉成), Wen Ge(葛文), Ying Zhang(张盈), Yujie Xiang(向玉婕), and Shukang Deng(邓书康). Chin. Phys. B, 2025, 34(9): 097306.
[3] Molecular simulation study on phase separation of immunoglobulin G
Lv-Meng Hu(胡吕梦), Yuan-Qiang Chen(陈远强), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2025, 34(8): 088701.
[4] Anisotropic displacement threshold energy and defect distribution in diamond: PKA energy and temperature effect
Ke Wu(吴可), Zeyi Du(杜泽依), Hongyang Liu(刘洪洋), Nanyun Bao(包南云), Chengke Xu(许成科), Hongrui Wang(王泓睿), Qunchao Tong(童群超), Bo Chen(陈博), Dongdong Kang(康冬冬), Guang Wang(王广), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2025, 34(8): 087104.
[5] Structure and properties of MgO melt at high pressure: A first-principles study
Min Wu(吴旻) and Zhongsen Sun(孙忠森). Chin. Phys. B, 2025, 34(8): 086301.
[6] Solubility parameters of supercritical CO2 and CO2+H2O fluids: A molecular dynamics study
Junliang Wang(王军良), Jiaqing Fang(方佳清), Ting Wu(吴婷), Quanyuan Wang(王泉源), Zhiyan Pan(潘志彦), Mian Hu(胡沔), and Min Wu(吴旻). Chin. Phys. B, 2025, 34(8): 088201.
[7] Enhancement of thermal conductivity in diamond/Al composites through vacuum-pressure thermal diffusion sintering
Wenxia Zhang(张文霞), Weixia Shen(沈维霞), Chao Fang(房超), Ye Wang(王烨), Yuewen Zhang(张跃文), Liangchao Chen(陈良超), Qianqian Wang(王倩倩), Kenan Li(黎克楠), Biao Wan(万彪), and Zhuangfei Zhang(张壮飞). Chin. Phys. B, 2025, 34(7): 070703.
[8] General-purpose moment tensor potential for Ga-In liquid alloys towards large-scale molecular dynamics with ab initio accuracy
Kai-Jie Zhao(赵凯杰) and Zhi-Gong Song(宋智功). Chin. Phys. B, 2025, 34(6): 066101.
[9] Unveiling the thermal transport mechanisms in novel carbon-based graphene-like materials using machine-learning potential
Yao-Yuan Zhang(章耀元), Meng-Qiu Long(龙孟秋), Sai-Jie Cheng(程赛杰), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2025, 34(6): 067101.
[10] Depolymerization mechanism of microtubule revealed by nucleotide-dependent changes of longitudinal and lateral interactions
Bingbing Zhang(张冰冰), Ziling Huo(霍子玲), Jiaxi Li(李佳希), Jingyu Qin(覃静宇), and Yizhao Geng(耿轶钊). Chin. Phys. B, 2025, 34(6): 068702.
[11] An ab initio dataset of size-dependent effective thermal conductivity for advanced technology transistors
Han Xie(谢涵), Ru Jia(贾如), Yonglin Xia(夏涌林), Lei Li(李磊), Yue Hu(胡跃), Jiaxuan Xu(徐家璇), Yufei Sheng(盛宇飞), Yuanyuan Wang(王元元), and Hua Bao(鲍华). Chin. Phys. B, 2025, 34(4): 046501.
[12] Molecular dynamics evaluation of self-diffusion coefficients in two-dimensional dusty plasmas
Muhammad Asif Shakoori, Misbah Khan, Haipeng Li(李海鹏), Aamir Shahzad, Maogang He(何茂刚), and Syed Ali Raza. Chin. Phys. B, 2025, 34(4): 045202.
[13] Molecular dynamics simulations of collision cascades in polycrystalline tungsten
Lixia Liu(刘丽霞), Mingxuan Jiang(蒋明璇), Ning Gao(高宁), Yangchun Chen(陈阳春), Wangyu Hu(胡望宇), and Hiuqiu Deng(邓辉球). Chin. Phys. B, 2025, 34(4): 046103.
[14] Effect of copper/tungsten heterophase interface on radiation resistance: Insights from atomistic simulations
Wen Chen(陈文), Min Li(李敏), Bao-Qin Fu(付宝勤), Tun Chen(陈暾), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2025, 34(4): 046108.
[15] Elastic-plastic behavior of nickel-based single crystal superalloys with γ-γ' phases based on molecular dynamics simulations
Jing-Zhao Cao(曹景昭), Yun-Guang Zhang(张云光), Zhong-Kui Zhang(张中奎), Jiang-Peng Fan(范江鹏), Qi Dong(董琪), and Ying-Ying Fang(方盈盈). Chin. Phys. B, 2025, 34(4): 046204.
No Suggested Reading articles found!