|
Special Issue:
SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas
|
| SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas |
Prev
Next
|
|
|
Thermal transport properties of 2D narrow bandgap semiconductor Ca3N2, Ba3P2, and Ba3As2: Machine learning potential study |
| Wenlong Li(李文龙)1,†, Yu Liu(刘余)1,†, Zhendong Li(李振东)1, Pei Zhang(张培)2,‡, Xinghua Li(李兴华)3,§, and Tao Ouyang(欧阳滔)1 |
1 School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China; 2 Hunan Provincial Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, School of Physics and Electronics, Hunan University of Science and Technology, Xiangtan 411201, China; 3 Hunan International Intellectual Exchange and Cooperation Center, Changsha 410013, China |
|
|
|
|
Abstract By combining neuroevolution potential (NEP) with phonon Boltzmann transport theory, we systematically investigate the thermal transport properties of three two-dimensional (2D) narrow bandgap semiconductors: Ca$_3$N$_2$, Ba$_3$P$_2$, and Ba$_3$As$_2$. The room-temperature lattice thermal conductivities ($\kappa_{\rm L}$) of Ca$_3$N$_2$, Ba$_3$P$_2$, and Ba$_3$As$_2$ considering only three-phonon scattering are 6.60 W/mK, 11.90 W/mK, and 8.88 W/mK, respectively. When taking into account the higher-order phonon (four-phonon) scattering processes, the $\kappa_{\rm L}$ of these three materials decrease to 6.12 W/mK, 9.73 W/mK and 6.77 W/mK, respectively. Among these systems, Ba$_3$As$_2$ undergoes the most pronounced suppression with a reduction of 23.8%. This is mainly due to the greater scattering phase space which enhances the four-phonon scattering. Meanwhile, it is revealed that unlike the traditional evaluation using the $P_{4}/P_{3}$ ratio as an indicator of the strength of four-phonon interactions, the thermal conductivity of Ba$_3$P$_2$ exhibits weaker four-phonon suppression behavior compared to Ba$_3$As$_2$, despite hosting a higher $P_{4}/P_{3}$ ratio. That is to say, the strength of four-phonon scattering cannot be evaluated solely by the ratio of $P_{4}/P_{3}$. These results presented in this work shed light on the thermal transport properties of such new 2D semiconductors with narrow bandgaps.
|
Received: 08 May 2025
Revised: 05 June 2025
Accepted manuscript online: 18 June 2025
|
|
PACS:
|
63.20.-e
|
(Phonons in crystal lattices)
|
| |
63.20.Ry
|
(Anharmonic lattice modes)
|
| |
66.70.Df
|
(Metals, alloys, and semiconductors)
|
| |
02.70.-c
|
(Computational techniques; simulations)
|
|
| Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 52372260), the Science Fund for Distinguished Young Scholars of Hunan Province (Grant Nos. 2024JJ2048 and 2021JJ10036), the Science and Technology Innovation Program of Hunan Province (Grant No. 2022RC1197), and the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 22B0512). |
Corresponding Authors:
Pei Zhang, Xinghua Li
E-mail: zhangpei@hnust.edu.cn;xinghualee@139.com
|
Cite this article:
Wenlong Li(李文龙), Yu Liu(刘余), Zhendong Li(李振东), Pei Zhang(张培), Xinghua Li(李兴华), and Tao Ouyang(欧阳滔) Thermal transport properties of 2D narrow bandgap semiconductor Ca3N2, Ba3P2, and Ba3As2: Machine learning potential study 2025 Chin. Phys. B 34 096302
|
[1] Geng J, Zhang P, Tang Z and Ouyang T 2024 Chin. Phys. B 33 046501 [2] Lu J, Cui C, Ouyang T, Li J, He C, Tang C and Zhong J 2023 Chin. Phys. B 32 048401 [3] Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R and Broido D 2010 Science 328 213 [4] Li S, Qin Z,Wu H, Li M, Kunz M, Alatas A, Kavner A and Hu Y 2022 Nature 612 459 [5] Wang Y, Xu N, Li D and Zhu J 2017 Adv. Funct. Mater. 27 1604134 [6] Zhang G and Zhang Y W 2017 Chin. Phys. B 26 034401 [7] Liu L, Feng Y and Shen Z 2003 Phys. Rev. B 68 104102 [8] Roy S, Zhang X, Puthirath A B, Meiyazhagan A, Bhattacharyya S, Rahman M M, Babu G, Susarla S, Saju S K and Tran M K 2021 Adv. Mater. 33 2101589 [9] Ling X, Wang H, Huang S, Xia F and Dresselhaus M S 2015 Proc. Natl. Acad. Sci. 112 4523 [10] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372 [11] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033 [12] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699 [13] Chen Q Y, Huang F J, Ruan J Q, Zhao Y F, Zhang X F, Xiong K and He Y 2024 Phys. Rev. Appl. 22 034013 [14] Behler J 2016 J. Chem. Phys. 145 170901 [15] Schran C, Thiemann F L, Rowe P, Müller E A, Marsalek O and Michaelides A 2021 Proc. Natl. Acad. Sci. USA 118 e2110077118 [16] Bartók A P, Payne M C, Kondor R and Csányi G 2010 Phys. Rev. Lett. 104 136403 [17] Bartók A P and Csányi G 2015 Int. J. Quantum Chem. 115 1051 [18] Lysogorskiy Y, van der Oord C, Bochkarev A, Menon S, Rinaldi M, Hammerschmidt T, Mrovec M, Thompson A, Csányi G and Ortner C 2021 npj Comput. Mater. 7 97 [19] Bochkarev A, Lysogorskiy Y, Ortner C, Csányi G and Drautz R 2022 Phys. Rev. Res. 4 L042019 [20] Wang H, Zhang L and Han J 2018 Comput. Phys. Commun. 228 178 [21] Han J, Zhang L and Car R 2018 Commun. Comput. Phys. 23 629 [22] Shapeev A V 2016 Multiscale Model. Simul. 14 1153 [23] Novoselov I, Yanilkin A, Shapeev A and Podryabinkin E 2019 Comput. Mater. Sci. 164 46 [24] Fan Z, Zeng Z, Zhang C, Wang Y, Song K, Dong H, Chen Y and Ala- Nissila T 2021 Phys. Rev. B 104 104309 [25] Fan Z 2022 J. Phys.: Condens. Matter 34 125902 [26] Fan Z,Wang Y, Ying P, Song K,Wang J,Wang Y, Zeng Z, Xu K, Lindgren E and Rahm J M 2022 J. Chem. Phys. 157 114801 [27] Tang Z, Wang X, He C, Li J, Chen M, Tang C and Ouyang T 2024 Phys. Rev. B 110 134320 [28] Zhang J, Zhang H C, LiWand Zhang G 2024 Chin. Phys. B 33 047402 [29] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [30] Blöchl P E 1994 Phys. Rev. B 50 17953 [31] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [32] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [33] Ziman J M 2001 Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford: Oxford University Press) [34] Zhou H, Zhou S, Hua Z, Bawane K and Feng T 2023 Appl. Phys. Lett. 123 192201 [35] Togo A and Tanaka I 2015 Scr. Mater. 108 1 [36] Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747 [37] Han Z, Yang X, Li W, Feng T and Ruan X 2022 Comput. Phys. Commun. 270 108179 [38] Guo Z, Han Z, Feng D, Lin G and Ruan X 2024 npj Comput. Mater. 10 31 [39] Broido D, Lindsay L and Ward A 2012 Phys. Rev. B 86 115203 [40] Tong Z, Dumitrica T and Frauenheim T 2021 Nano Lett. 21 4351 [41] Parrish K D, Jain A, Larkin J M, Saidi W A and McGaughey A J 2014 Phys. Rev. B 90 235201 [42] Cui C, Zhang Y, Ouyang T, Chen M, Tang C, Chen Q, He C, Li J and Zhong J 2023 Phys. Rev. Mater. 7 033803 [43] Tang Z, Wang X, Li J, He C, Tang C, Wang H, Chen M and Ouyang T 2023 Appl. Phys. Lett. 122 172203 [44] Sun J, Liu X, Xiong Y, Yao Y, Yang X, Shao C, Wang R and Li S 2025 Appl. Phys. Lett. 126 112112 [45] Feng T, Lindsay L and Ruan X 2017 Phys. Rev. B 96 161201 [46] Yang X, Feng T, Li J and Ruan X 2019 Phys. Rev. B 100 245203 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|