Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 096302    DOI: 10.1088/1674-1056/ade5a0
Special Issue: SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas
SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas Prev   Next  

Thermal transport properties of 2D narrow bandgap semiconductor Ca3N2, Ba3P2, and Ba3As2: Machine learning potential study

Wenlong Li(李文龙)1,†, Yu Liu(刘余)1,†, Zhendong Li(李振东)1, Pei Zhang(张培)2,‡, Xinghua Li(李兴华)3,§, and Tao Ouyang(欧阳滔)1
1 School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China;
2 Hunan Provincial Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, School of Physics and Electronics, Hunan University of Science and Technology, Xiangtan 411201, China;
3 Hunan International Intellectual Exchange and Cooperation Center, Changsha 410013, China
Abstract  By combining neuroevolution potential (NEP) with phonon Boltzmann transport theory, we systematically investigate the thermal transport properties of three two-dimensional (2D) narrow bandgap semiconductors: Ca$_3$N$_2$, Ba$_3$P$_2$, and Ba$_3$As$_2$. The room-temperature lattice thermal conductivities ($\kappa_{\rm L}$) of Ca$_3$N$_2$, Ba$_3$P$_2$, and Ba$_3$As$_2$ considering only three-phonon scattering are 6.60 W/mK, 11.90 W/mK, and 8.88 W/mK, respectively. When taking into account the higher-order phonon (four-phonon) scattering processes, the $\kappa_{\rm L}$ of these three materials decrease to 6.12 W/mK, 9.73 W/mK and 6.77 W/mK, respectively. Among these systems, Ba$_3$As$_2$ undergoes the most pronounced suppression with a reduction of 23.8%. This is mainly due to the greater scattering phase space which enhances the four-phonon scattering. Meanwhile, it is revealed that unlike the traditional evaluation using the $P_{4}/P_{3}$ ratio as an indicator of the strength of four-phonon interactions, the thermal conductivity of Ba$_3$P$_2$ exhibits weaker four-phonon suppression behavior compared to Ba$_3$As$_2$, despite hosting a higher $P_{4}/P_{3}$ ratio. That is to say, the strength of four-phonon scattering cannot be evaluated solely by the ratio of $P_{4}/P_{3}$. These results presented in this work shed light on the thermal transport properties of such new 2D semiconductors with narrow bandgaps.
Keywords:  narrow-bandgap semiconductor materials      neuroevolution potential (NEP)      four-phonon (4ph) scattering      lattice thermal conductivity ($\kappa_{\rm L}$)  
Received:  08 May 2025      Revised:  05 June 2025      Accepted manuscript online:  18 June 2025
PACS:  63.20.-e (Phonons in crystal lattices)  
  63.20.Ry (Anharmonic lattice modes)  
  66.70.Df (Metals, alloys, and semiconductors)  
  02.70.-c (Computational techniques; simulations)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 52372260), the Science Fund for Distinguished Young Scholars of Hunan Province (Grant Nos. 2024JJ2048 and 2021JJ10036), the Science and Technology Innovation Program of Hunan Province (Grant No. 2022RC1197), and the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 22B0512).
Corresponding Authors:  Pei Zhang, Xinghua Li     E-mail:  zhangpei@hnust.edu.cn;xinghualee@139.com

Cite this article: 

Wenlong Li(李文龙), Yu Liu(刘余), Zhendong Li(李振东), Pei Zhang(张培), Xinghua Li(李兴华), and Tao Ouyang(欧阳滔) Thermal transport properties of 2D narrow bandgap semiconductor Ca3N2, Ba3P2, and Ba3As2: Machine learning potential study 2025 Chin. Phys. B 34 096302

[1] Geng J, Zhang P, Tang Z and Ouyang T 2024 Chin. Phys. B 33 046501
[2] Lu J, Cui C, Ouyang T, Li J, He C, Tang C and Zhong J 2023 Chin. Phys. B 32 048401
[3] Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R and Broido D 2010 Science 328 213
[4] Li S, Qin Z,Wu H, Li M, Kunz M, Alatas A, Kavner A and Hu Y 2022 Nature 612 459
[5] Wang Y, Xu N, Li D and Zhu J 2017 Adv. Funct. Mater. 27 1604134
[6] Zhang G and Zhang Y W 2017 Chin. Phys. B 26 034401
[7] Liu L, Feng Y and Shen Z 2003 Phys. Rev. B 68 104102
[8] Roy S, Zhang X, Puthirath A B, Meiyazhagan A, Bhattacharyya S, Rahman M M, Babu G, Susarla S, Saju S K and Tran M K 2021 Adv. Mater. 33 2101589
[9] Ling X, Wang H, Huang S, Xia F and Dresselhaus M S 2015 Proc. Natl. Acad. Sci. 112 4523
[10] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[11] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[12] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[13] Chen Q Y, Huang F J, Ruan J Q, Zhao Y F, Zhang X F, Xiong K and He Y 2024 Phys. Rev. Appl. 22 034013
[14] Behler J 2016 J. Chem. Phys. 145 170901
[15] Schran C, Thiemann F L, Rowe P, Müller E A, Marsalek O and Michaelides A 2021 Proc. Natl. Acad. Sci. USA 118 e2110077118
[16] Bartók A P, Payne M C, Kondor R and Csányi G 2010 Phys. Rev. Lett. 104 136403
[17] Bartók A P and Csányi G 2015 Int. J. Quantum Chem. 115 1051
[18] Lysogorskiy Y, van der Oord C, Bochkarev A, Menon S, Rinaldi M, Hammerschmidt T, Mrovec M, Thompson A, Csányi G and Ortner C 2021 npj Comput. Mater. 7 97
[19] Bochkarev A, Lysogorskiy Y, Ortner C, Csányi G and Drautz R 2022 Phys. Rev. Res. 4 L042019
[20] Wang H, Zhang L and Han J 2018 Comput. Phys. Commun. 228 178
[21] Han J, Zhang L and Car R 2018 Commun. Comput. Phys. 23 629
[22] Shapeev A V 2016 Multiscale Model. Simul. 14 1153
[23] Novoselov I, Yanilkin A, Shapeev A and Podryabinkin E 2019 Comput. Mater. Sci. 164 46
[24] Fan Z, Zeng Z, Zhang C, Wang Y, Song K, Dong H, Chen Y and Ala- Nissila T 2021 Phys. Rev. B 104 104309
[25] Fan Z 2022 J. Phys.: Condens. Matter 34 125902
[26] Fan Z,Wang Y, Ying P, Song K,Wang J,Wang Y, Zeng Z, Xu K, Lindgren E and Rahm J M 2022 J. Chem. Phys. 157 114801
[27] Tang Z, Wang X, He C, Li J, Chen M, Tang C and Ouyang T 2024 Phys. Rev. B 110 134320
[28] Zhang J, Zhang H C, LiWand Zhang G 2024 Chin. Phys. B 33 047402
[29] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[30] Blöchl P E 1994 Phys. Rev. B 50 17953
[31] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[32] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[33] Ziman J M 2001 Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford: Oxford University Press)
[34] Zhou H, Zhou S, Hua Z, Bawane K and Feng T 2023 Appl. Phys. Lett. 123 192201
[35] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[36] Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747
[37] Han Z, Yang X, Li W, Feng T and Ruan X 2022 Comput. Phys. Commun. 270 108179
[38] Guo Z, Han Z, Feng D, Lin G and Ruan X 2024 npj Comput. Mater. 10 31
[39] Broido D, Lindsay L and Ward A 2012 Phys. Rev. B 86 115203
[40] Tong Z, Dumitrica T and Frauenheim T 2021 Nano Lett. 21 4351
[41] Parrish K D, Jain A, Larkin J M, Saidi W A and McGaughey A J 2014 Phys. Rev. B 90 235201
[42] Cui C, Zhang Y, Ouyang T, Chen M, Tang C, Chen Q, He C, Li J and Zhong J 2023 Phys. Rev. Mater. 7 033803
[43] Tang Z, Wang X, Li J, He C, Tang C, Wang H, Chen M and Ouyang T 2023 Appl. Phys. Lett. 122 172203
[44] Sun J, Liu X, Xiong Y, Yao Y, Yang X, Shao C, Wang R and Li S 2025 Appl. Phys. Lett. 126 112112
[45] Feng T, Lindsay L and Ruan X 2017 Phys. Rev. B 96 161201
[46] Yang X, Feng T, Li J and Ruan X 2019 Phys. Rev. B 100 245203
[1] Lattice and phonon properties in semiconductors FeSb2 and RuSb2
Meng Zhang(张萌), Shengnan Dai(戴胜男), Ranran Zhang(张冉冉), Mingfang Shu(舒明方), Wei Xu(徐威), Jinfeng Zhu(朱金峰), Xianglin Liu(刘祥麟), Yixuan Luo(罗伊轩), Toru Ishigaki, Bo Duan(段波), Yanfeng Guo(郭艳峰), Zhe Qu(屈哲), Jiong Yang(杨炯), and Jie Ma(马杰). Chin. Phys. B, 2025, 34(8): 086302.
[2] Ultrasonic scalpel based on fusiform phononic crystal structure
Sha Wang(王莎), Junjie Shan(单俊杰), and Shuyu Lin(林书玉). Chin. Phys. B, 2024, 33(10): 104302.
[3] Dynamic response of a thermal transistor to time-varying signals
Qinli Ruan(阮琴丽), Wenjun Liu(刘文君), and Lei Wang(王雷). Chin. Phys. B, 2024, 33(5): 056301.
[4] Impeded thermal transport in aperiodic BN/C nanotube superlattices due to phonon Anderson localization
Luyi Sun(孙路易), Fangyuan Zhai(翟方园), Zengqiang Cao(曹增强), Xiaoyu Huang(黄晓宇), Chunsheng Guo(郭春生), Hongyan Wang(王红艳), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2023, 32(5): 056301.
[5] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), and Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[6] Quantum entangled fractional Fourier transform based on the IWOP technique
Ke Zhang(张科), Lan-Lan Li(李兰兰), Pan-Pan Yu(余盼盼), Ying Zhou(周莹),Da-Wei Guo(郭大伟), and Hong-Yi Fan(范洪义). Chin. Phys. B, 2023, 32(4): 040302.
[7] Advances of phononics in 2012—2022
Ya-Fei Ding(丁亚飞), Gui-Mei Zhu(朱桂妹), Xiang-Ying Shen(沈翔瀛),Xue Bai(柏雪), and Bao-Wen Li(李保文). Chin. Phys. B, 2022, 31(12): 126301.
[8] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[9] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[10] Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure
Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2022, 31(5): 054302.
[11] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[12] Excellent thermoelectric performance predicted in Sb2Te with natural superlattice structure
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chaoyu He(何朝宇), Jin Li(李金), Chunxiao Zhang(张春小), and Jianxin Zhong(钟建新). Chin. Phys. B, 2021, 30(12): 128401.
[13] Phonon dispersion relations of crystalline solids based on LAMMPS package
Zhiyong Wei(魏志勇), Tianhang Qi(戚天航), Weiyu Chen(陈伟宇), and Yunfei Chen(陈云飞). Chin. Phys. B, 2021, 30(11): 114301.
[14] Analytical solution of crystal diffraction intensity
Wan-Li Shang(尚万里), Ao Sun(孙奥), Hua-Bin Du(杜华冰), Guo-Hong Yang(杨国洪), Min-Xi Wei(韦敏习), Xu-Fei Xie(谢旭飞), Xing-Sen Che(车兴森), Li-Fei Hou(侯立飞), Wen-Hai Zhang(张文海), Miao Li(黎淼), Jun Shi(施军), Feng Wang(王峰), Hai-En He(何海恩), Jia-Min Yang(杨家敏), Shao-En Jiang(江少恩), and Bao-Han Zhang(张保汉). Chin. Phys. B, 2021, 30(11): 116101.
[15] Ab-initio calculations of bandgap tuning of In1-xGaxY (Y = N, P) alloys for optoelectronic applications
Muhammad Rashid, Jamil M, Mahmood Q, Shahid M Ramay, Asif Mahmood A, and Ghaithan H M. Chin. Phys. B, 2021, 30(11): 116301.
No Suggested Reading articles found!