Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 070703    DOI: 10.1088/1674-1056/adca9e
GENERAL Prev   Next  

Enhancement of thermal conductivity in diamond/Al composites through vacuum-pressure thermal diffusion sintering

Wenxia Zhang(张文霞)1, Weixia Shen(沈维霞)1, Chao Fang(房超)1, Ye Wang(王烨)1, Yuewen Zhang(张跃文)1, Liangchao Chen(陈良超)1, Qianqian Wang(王倩倩)1, Kenan Li(黎克楠)2,‡, Biao Wan(万彪)1, and Zhuangfei Zhang(张壮飞)1,†
1 Key Laboratory of Material Physics of Ministry of Education, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450052, China;
2 State Key Laboratory for High Performance Tools, Zhengzhou Research Institute for Abrasives & Grinding Co., Ltd., Zhengzhou 450001, China
Abstract  Improving the thermal conductivity (TC) of diamond-metal composites has always been a significant challenge in the field of thermal management. In this paper, diamond/Al composites are systematically studied, and the influence of the holding time (10-120 min) on interface structure and TC is discussed. The results of this research show that long-term thermal diffusion sintering can achieve dense interfacial bonding in diamond/Al composites, enhancing their TC. Diamond/Al composites with 50 vol% of 900 μm diamond attain the highest TC value of 888.73 W$\cdot$m$^{-1}\cdot$K$^{-1}$ under sintering conditions of 650 $^\circ $C, 50 MPa, and 120 min - nearly 92% of the theoretical value predicted by the Maxwell model. This study establishes that high TC can be achieved through long-term thermal diffusion alone, without the need for complex diamond surface coating or substrate alloying.
Keywords:  diamond/Al composites      thermal conductivity      interfacial bonding  
Received:  22 January 2025      Revised:  07 April 2025      Accepted manuscript online:  09 April 2025
PACS:  07.78.+s (Electron, positron, and ion microscopes; electron diffractometers)  
  12.38.Qk (Experimental tests)  
  07.30.-t (Vacuum apparatus)  
  02.30.Nw (Fourier analysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274372 and 12274373) and the Major Science and Technology Projects of Henan Province (Grant No. 231100230300).
Corresponding Authors:  Zhuangfei Zhang, Kenan Li     E-mail:  zhangzf@zzu.edu.cn;Likenan2004@163.com

Cite this article: 

Wenxia Zhang(张文霞), Weixia Shen(沈维霞), Chao Fang(房超), Ye Wang(王烨), Yuewen Zhang(张跃文), Liangchao Chen(陈良超), Qianqian Wang(王倩倩), Kenan Li(黎克楠), Biao Wan(万彪), and Zhuangfei Zhang(张壮飞) Enhancement of thermal conductivity in diamond/Al composites through vacuum-pressure thermal diffusion sintering 2025 Chin. Phys. B 34 070703

[1] Li R, Hussain K, Liao M, Huynh K, Hoque M and Wyant S 2024 ACS Appl. Mater. Interfaces 16 8109
[2] He Z, Yan Y and Zhang Z 2021 Energy 216 119223
[3] Yang K M, Ma Y C, Zhang Z Y, Zhu J, Sun Z B and Chen J S 2020 Acta. Mater. 197 342
[4] Hahn T A 1970 J. Appl. Phys. 41 5096
[5] Slack G A and Bartram S F 1975 J. Appl. Phys. 46 89
[6] Okamoto H 2016 J. Phase. Equilibria. Diffus. 37 246
[7] Wang L, Bai G, Li N, Gao L, Li J and Xu K 2022 Vacuum 202 111133
[8] Zhang Y, Bai G, Zhu X, Dai J, Wang X and Wang J 2023 Materials Today Communications 34 105357
[9] Ukhina A V, Dudina D V, Esikov M A, Samoshkin D A, Stankus S V and Skovorodin I N 2020 Surf. Coating. Technol. 401 126272
[10] Zhang Y, Wang Z, Li N, Che Z, Liu X and Chang G 2022 ACS Appl. Mater. Interfaces 14 35215
[11] Tan Z Q, Li Z Q, Fan G L, Kai X Z, Ji G, Zhang L T and Zhang D 2013 Composites Part B: Engineering 47 173
[12] Che Z, Wang Q, Wang L, Li J, Zhang H, Zhang Y, Wang X, Wang J and Kim MJ 2017 Composites Part B: Engineering 113 285
[13] Xue C and Yu J K 2012 Emerg. Mater. Res. 1 99
[14] Zhang Y, Zhang H L, Wu J H and Wang X T 2011 Scripta. Mater. 65 1097
[15] Chen G, YangW, Xin L,Wang P, Liu S, Qiao J, Hu F, Zhang Q andWu G 2018 J. Alloys Compd. 735 777
[16] Kang Q, He X, Ren S, Liu T, Liu Q, Wu M and Qu X 2015 Mater. Charact. 105 18
[17] Tan Z, Li Z, Fan G, Guo Q, Kai X, Ji G, Zhang L and Zhang D 2013 Mater. Des. 47 160
[18] Liu X, Sun F, Wang W, Zhao J, Wang L, Che Z, Bai G, Wang X, Wang J, Kim MJ and Zhang H 2022 Int. J. Miner. Metall. Mater. 29 2020
[19] Zhang H, Zhang J, Liu Y, Zhang F, Fan T and Zhang D 2018 Scripta. Mater. 152 84
[20] Zhao C and Wang J 2013 Mater. Sci. Eng. A 588 221
[21] Ma S, Zhao N, Shi C, Liu E, He C, He F and Ma L 2017 Appl. Surf. Sci. 402 372
[22] Kang Q, He X, Ren S, Zhang L, Wu M, Liu T, Liu Q, Guo C and Qu X 2013 J. Mater. Sci. 48 6133
[23] Chang G, Sun F,Wang L, Che Z,Wang X,Wang J, KimMJ and Zhang H 2019 ACS Appl. Mater. Interfaces 11 26507
[24] Chang G, Sun F, Wang L, Zhang Y, Wang X, Wang J, Kim M J and Zhang H 2020 Compos. Appl. Sci. Manuf. 135 105921
[25] Kondakci E and Solak N 2022 Journal of Materials Science 57 3430
[26] Zhang Y, Wang L, Hao J, Li N, Wang X and Zhang H 2024 Diam. Relat. Mater. 146 111257
[27] Zhang X and Lei Q 2024 Mater. Lett. 363 136253
[28] Hao J, Zhang Y, Li N, Dai J, Wang X and Zhang H 2023 Diam. Relat. Mater. 138 110213
[29] Xie Z, Guo H, Zhang X, Huang S, Xie H and Mi X 2021 Diam. Relat. Mater. 114 108309
[30] Bai G, Wang L, Zhang Y, Wang X, Wang J, Kim M J and Zhang H 2019 Mater. Charact. 152 265
[31] Li J,Wang X, Qiao Y, Zhang Y, He Z and Zhang H 2015 Scripta. Mater. 109 72
[32] Weber L and Tavangar R 2007 Scripta. Mater. 57 988
[33] Che Q L, Chen X K, Ji Y Q, Li Y W, Wang L X, Cao S Z, Jiang Y G and Wang Z 2015 Mater. Sci. Semicond. Process. 30 104
[34] Cao Y Z, Li B, Liu L, Li S H, Hui D X, Wang S D, Liu H Y, Li X, Zhang X, Zhou S Y and Li S F 2024 Journal of Materials Research and Technology 33 6641
[35] Small M and Ryba E 1981 Metall. Trans. A 12 1389
[36] Yang L, Shen P, Lin Q, Qiu F and Jiang Q 2011 Appl. Surf. Sci. 257 6276
[37] Lin Q, Yang F, Yang H, Sui R, Shi Y andWang J 2020 Carbon 159 561
[38] Liu X Y, Wang W G, Wang D N I, Chen D R and Ma L Q 2016 Materials Chemistry and Physics 182 256
[39] Li J, Zhang H, Wang L, Che Z, Zhang Y, Wang J, Kim M J and Wang X 2016 Compos. Appl. Sci. Manuf. 91 189
[40] Che Q L, Zhang J J, Chen X K, Ji Y Q, Li Y W and Wang L X 2015 Mater. Sci. Semicond. Process. 33 67
[41] Zhang L N, Zhang Y, Wang Y, Wu H X, Zhao L D and Zhang H 2022 Materials Today Physics 28 100901
[42] Ukhina A V, Dudina D V, Esikov M A, Samoshkin D A and Stankus S V 2023 J. Compos. Sci. 7 219
[43] Pei Q X, Lu C, Fang F Z and Wu H 2007 Comput. Mater. Sci. 37 434
[44] Kim Y and Lee B 2008 Acta. Mater. 56 3481
[45] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[46] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[47] Li N, Wang L, Dai J, Wang X, Wang J, Kim M J and Zhang H 2019 Diam. Relat. Mater. 100 107565
[48] Huang G F, Jia X P, Li Y, Hu M H, Li Z C, Yan B M and Ma H A 2011 Chin. Phys. B 20 078103
[49] Yamamoto Y, Imai T, Tanabe K, Tsuno T, Kumazawa Y and Fujimori N 1997 Diamond. Relat. Mater. 6 1057
[50] Jia J, Hei X, Yang X, et al. 2024 Materials 17 1992
[51] Cui W, Xu H, Chen J, et al. 2016 International Journal of Minerals, Metallurgy, and Materials 23 716
[52] Zhou H, Ran M, Li Y, et al. 2021 Journal of Materials Processing Technology 297 117267
[53] Wei C, Xu X, Wei B, et al. 2020 Diamond and Related Materials 104 107760
[54] Dou W, Zhu C, Wu X, Yang X, Fa W, Zhang Y, Tong J, Zhu G and Zheng Z 2023 Carbon Energy 5 e379
[55] Sang J, Chen Q, Yang W, Zhu J, Fu L, Li D and Zhou L 2022 Surfaces and Interfaces 31 102019
[56] Li X, Yang W, Sang J, Zhu J, Fu L, Li D and Zhou L 2020 J. Alloys Compd. 846 156258
[57] Mizuuchi K, Inoue K, Agari Y, Morisada Y, Sugioka M, Tanaka M, Takeuchi T, Tani J, Kawahara M and Makino Y 2011 Composites Part B: Engineering 42 825
[58] Tan Z, Xiong D B, Fan G, Chen Z, Guo Q, Guo C, Ji G, Li Z and Zhang D 2018 J. Mater. Sci. 53 6602
[59] Zhao J, Yun S, Li Q and Wang L 2024 Heliyon 10 e37391
[60] Jia J, Hei X, Yang X, Zhao W, Wang Y, Zhuo Q, Li Y, Dong H, Liu F, Li Y and Yan X 2024 Materials 17 1992
[61] Zhou H, Jia Q, Sun J, Li Y, He Y, Bi W and Zheng W 2024 Materials 17 1485
[62] Haruna K, Maeta H, Kazutoshi Ohashi K O and Takuro Koike T K 1992 Jpn. J. Appl. Phys. 31 2527
[1] Hyperparameter optimization and force error correction of neuroevolution potential for predicting thermal conductivity of wurtzite GaN
Zhuo Chen(陈卓), Yuejin Yuan(袁越锦), Wenyang Ding(丁文扬), Shouhang Li(李寿航), Meng An(安盟), and Gang Zhang(张刚). Chin. Phys. B, 2025, 34(8): 086110.
[2] Unveiling the thermal transport mechanisms in novel carbon-based graphene-like materials using machine-learning potential
Yao-Yuan Zhang(章耀元), Meng-Qiu Long(龙孟秋), Sai-Jie Cheng(程赛杰), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2025, 34(6): 067101.
[3] An ab initio dataset of size-dependent effective thermal conductivity for advanced technology transistors
Han Xie(谢涵), Ru Jia(贾如), Yonglin Xia(夏涌林), Lei Li(李磊), Yue Hu(胡跃), Jiaxuan Xu(徐家璇), Yufei Sheng(盛宇飞), Yuanyuan Wang(王元元), and Hua Bao(鲍华). Chin. Phys. B, 2025, 34(4): 046501.
[4] Significant increase in thermal conductivity of cathode material LiFePO4 by Na substitution: A machine learning interatomic potential-assisted investigation
Shi-Yi Li(李诗怡), Qian Liu(刘骞), Yu-Jia Zeng(曾育佳), Guofeng Xie(谢国锋), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2025, 34(2): 028201.
[5] GaInX3 (X = S, Se, Te): Ultra-low thermal conductivity and excellent thermoelectric performance
Zhi-Fu Duan(段志福), Chang-Hao Ding(丁长浩), Zhong-Ke Ding(丁中科), Wei-Hua Xiao(肖威华), Fang Xie(谢芳), Nan-Nan Luo(罗南南), Jiang Zeng(曾犟), Li-Ming Tang(唐黎明), and Ke-Qiu Chen(陈克求). Chin. Phys. B, 2024, 33(8): 087302.
[6] Theoretical study on the effective thermal conductivity of silica aerogels based on a cross-aligned and cubic pore model
Kuncan Zheng(郑坤灿), Zhendong Li(李震东), Yutong Cao(曹豫通), Ben Liu(刘犇)), and Junlei Hu(胡君磊). Chin. Phys. B, 2024, 33(6): 064401.
[7] Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene—silicon nanoparticle systems
Yi Li(李毅), Yinong Liu(刘一浓), and Shiqian Hu(胡世谦). Chin. Phys. B, 2024, 33(4): 047401.
[8] Thermal conductivity of GeTe crystals based on machine learning potentials
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Weifeng Li(李伟峰), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(4): 047402.
[9] Phonon transport properties of Janus Pb2XAs(X = P, Sb, and Bi) monolayers: A DFT study
Jiaxin Geng(耿嘉鑫), Pei Zhang(张培), Zhunyun Tang(汤准韵), and Tao Ouyang(欧阳滔). Chin. Phys. B, 2024, 33(4): 046501.
[10] Wide frequency phonons manipulation in Si nanowire by introducing nanopillars and nanoparticles
Yatao Li(李亚涛), Yingguang Liu(刘英光), Xin Li(李鑫), Hengxuan Li(李亨宣), Zhixiang Wang(王志香), and Jiuyi Zhang(张久意). Chin. Phys. B, 2024, 33(4): 046502.
[11] Local thermal conductivity of inhomogeneous nano-fluidic films:A density functional theory perspective
Zongli Sun(孙宗利), Yanshuang Kang(康艳霜), and Yanmei Kang(康艳梅). Chin. Phys. B, 2024, 33(4): 046503.
[12] Thermal conductivity of iron under the Earth's inner core pressure
Cui-E Hu(胡翠娥), Mu-Xin Jiao(焦亩鑫), Xue-Nan Yang(杨学楠), Zhao-Yi Zeng(曾召益), and Jun Chen(陈军). Chin. Phys. B, 2024, 33(10): 106501.
[13] Unveiling phonon frequency-dependent mechanism of heat transport across stacking fault in silicon carbide
Fu Wang(王甫), Yandong Sun(孙彦东), Yu Zou(邹宇), Ben Xu(徐贲), and Baoqin Fu(付宝勤). Chin. Phys. B, 2023, 32(9): 096301.
[14] Enhancement of thermal rectification by asymmetry engineering of thermal conductivity and geometric structure for multi-segment thermal rectifier
Fu-Ye Du(杜甫烨), Wang Zhang(张望), Hui-Qiong Wang(王惠琼), and Jin-Cheng Zheng(郑金成). Chin. Phys. B, 2023, 32(6): 064402.
[15] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
No Suggested Reading articles found!