|
|
|
Enhancement of thermal conductivity in diamond/Al composites through vacuum-pressure thermal diffusion sintering |
| Wenxia Zhang(张文霞)1, Weixia Shen(沈维霞)1, Chao Fang(房超)1, Ye Wang(王烨)1, Yuewen Zhang(张跃文)1, Liangchao Chen(陈良超)1, Qianqian Wang(王倩倩)1, Kenan Li(黎克楠)2,‡, Biao Wan(万彪)1, and Zhuangfei Zhang(张壮飞)1,† |
1 Key Laboratory of Material Physics of Ministry of Education, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450052, China; 2 State Key Laboratory for High Performance Tools, Zhengzhou Research Institute for Abrasives & Grinding Co., Ltd., Zhengzhou 450001, China |
|
|
|
|
Abstract Improving the thermal conductivity (TC) of diamond-metal composites has always been a significant challenge in the field of thermal management. In this paper, diamond/Al composites are systematically studied, and the influence of the holding time (10-120 min) on interface structure and TC is discussed. The results of this research show that long-term thermal diffusion sintering can achieve dense interfacial bonding in diamond/Al composites, enhancing their TC. Diamond/Al composites with 50 vol% of 900 μm diamond attain the highest TC value of 888.73 W$\cdot$m$^{-1}\cdot$K$^{-1}$ under sintering conditions of 650 $^\circ $C, 50 MPa, and 120 min - nearly 92% of the theoretical value predicted by the Maxwell model. This study establishes that high TC can be achieved through long-term thermal diffusion alone, without the need for complex diamond surface coating or substrate alloying.
|
Received: 22 January 2025
Revised: 07 April 2025
Accepted manuscript online: 09 April 2025
|
|
PACS:
|
07.78.+s
|
(Electron, positron, and ion microscopes; electron diffractometers)
|
| |
12.38.Qk
|
(Experimental tests)
|
| |
07.30.-t
|
(Vacuum apparatus)
|
| |
02.30.Nw
|
(Fourier analysis)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274372 and 12274373) and the Major Science and Technology Projects of Henan Province (Grant No. 231100230300). |
Corresponding Authors:
Zhuangfei Zhang, Kenan Li
E-mail: zhangzf@zzu.edu.cn;Likenan2004@163.com
|
Cite this article:
Wenxia Zhang(张文霞), Weixia Shen(沈维霞), Chao Fang(房超), Ye Wang(王烨), Yuewen Zhang(张跃文), Liangchao Chen(陈良超), Qianqian Wang(王倩倩), Kenan Li(黎克楠), Biao Wan(万彪), and Zhuangfei Zhang(张壮飞) Enhancement of thermal conductivity in diamond/Al composites through vacuum-pressure thermal diffusion sintering 2025 Chin. Phys. B 34 070703
|
[1] Li R, Hussain K, Liao M, Huynh K, Hoque M and Wyant S 2024 ACS Appl. Mater. Interfaces 16 8109 [2] He Z, Yan Y and Zhang Z 2021 Energy 216 119223 [3] Yang K M, Ma Y C, Zhang Z Y, Zhu J, Sun Z B and Chen J S 2020 Acta. Mater. 197 342 [4] Hahn T A 1970 J. Appl. Phys. 41 5096 [5] Slack G A and Bartram S F 1975 J. Appl. Phys. 46 89 [6] Okamoto H 2016 J. Phase. Equilibria. Diffus. 37 246 [7] Wang L, Bai G, Li N, Gao L, Li J and Xu K 2022 Vacuum 202 111133 [8] Zhang Y, Bai G, Zhu X, Dai J, Wang X and Wang J 2023 Materials Today Communications 34 105357 [9] Ukhina A V, Dudina D V, Esikov M A, Samoshkin D A, Stankus S V and Skovorodin I N 2020 Surf. Coating. Technol. 401 126272 [10] Zhang Y, Wang Z, Li N, Che Z, Liu X and Chang G 2022 ACS Appl. Mater. Interfaces 14 35215 [11] Tan Z Q, Li Z Q, Fan G L, Kai X Z, Ji G, Zhang L T and Zhang D 2013 Composites Part B: Engineering 47 173 [12] Che Z, Wang Q, Wang L, Li J, Zhang H, Zhang Y, Wang X, Wang J and Kim MJ 2017 Composites Part B: Engineering 113 285 [13] Xue C and Yu J K 2012 Emerg. Mater. Res. 1 99 [14] Zhang Y, Zhang H L, Wu J H and Wang X T 2011 Scripta. Mater. 65 1097 [15] Chen G, YangW, Xin L,Wang P, Liu S, Qiao J, Hu F, Zhang Q andWu G 2018 J. Alloys Compd. 735 777 [16] Kang Q, He X, Ren S, Liu T, Liu Q, Wu M and Qu X 2015 Mater. Charact. 105 18 [17] Tan Z, Li Z, Fan G, Guo Q, Kai X, Ji G, Zhang L and Zhang D 2013 Mater. Des. 47 160 [18] Liu X, Sun F, Wang W, Zhao J, Wang L, Che Z, Bai G, Wang X, Wang J, Kim MJ and Zhang H 2022 Int. J. Miner. Metall. Mater. 29 2020 [19] Zhang H, Zhang J, Liu Y, Zhang F, Fan T and Zhang D 2018 Scripta. Mater. 152 84 [20] Zhao C and Wang J 2013 Mater. Sci. Eng. A 588 221 [21] Ma S, Zhao N, Shi C, Liu E, He C, He F and Ma L 2017 Appl. Surf. Sci. 402 372 [22] Kang Q, He X, Ren S, Zhang L, Wu M, Liu T, Liu Q, Guo C and Qu X 2013 J. Mater. Sci. 48 6133 [23] Chang G, Sun F,Wang L, Che Z,Wang X,Wang J, KimMJ and Zhang H 2019 ACS Appl. Mater. Interfaces 11 26507 [24] Chang G, Sun F, Wang L, Zhang Y, Wang X, Wang J, Kim M J and Zhang H 2020 Compos. Appl. Sci. Manuf. 135 105921 [25] Kondakci E and Solak N 2022 Journal of Materials Science 57 3430 [26] Zhang Y, Wang L, Hao J, Li N, Wang X and Zhang H 2024 Diam. Relat. Mater. 146 111257 [27] Zhang X and Lei Q 2024 Mater. Lett. 363 136253 [28] Hao J, Zhang Y, Li N, Dai J, Wang X and Zhang H 2023 Diam. Relat. Mater. 138 110213 [29] Xie Z, Guo H, Zhang X, Huang S, Xie H and Mi X 2021 Diam. Relat. Mater. 114 108309 [30] Bai G, Wang L, Zhang Y, Wang X, Wang J, Kim M J and Zhang H 2019 Mater. Charact. 152 265 [31] Li J,Wang X, Qiao Y, Zhang Y, He Z and Zhang H 2015 Scripta. Mater. 109 72 [32] Weber L and Tavangar R 2007 Scripta. Mater. 57 988 [33] Che Q L, Chen X K, Ji Y Q, Li Y W, Wang L X, Cao S Z, Jiang Y G and Wang Z 2015 Mater. Sci. Semicond. Process. 30 104 [34] Cao Y Z, Li B, Liu L, Li S H, Hui D X, Wang S D, Liu H Y, Li X, Zhang X, Zhou S Y and Li S F 2024 Journal of Materials Research and Technology 33 6641 [35] Small M and Ryba E 1981 Metall. Trans. A 12 1389 [36] Yang L, Shen P, Lin Q, Qiu F and Jiang Q 2011 Appl. Surf. Sci. 257 6276 [37] Lin Q, Yang F, Yang H, Sui R, Shi Y andWang J 2020 Carbon 159 561 [38] Liu X Y, Wang W G, Wang D N I, Chen D R and Ma L Q 2016 Materials Chemistry and Physics 182 256 [39] Li J, Zhang H, Wang L, Che Z, Zhang Y, Wang J, Kim M J and Wang X 2016 Compos. Appl. Sci. Manuf. 91 189 [40] Che Q L, Zhang J J, Chen X K, Ji Y Q, Li Y W and Wang L X 2015 Mater. Sci. Semicond. Process. 33 67 [41] Zhang L N, Zhang Y, Wang Y, Wu H X, Zhao L D and Zhang H 2022 Materials Today Physics 28 100901 [42] Ukhina A V, Dudina D V, Esikov M A, Samoshkin D A and Stankus S V 2023 J. Compos. Sci. 7 219 [43] Pei Q X, Lu C, Fang F Z and Wu H 2007 Comput. Mater. Sci. 37 434 [44] Kim Y and Lee B 2008 Acta. Mater. 56 3481 [45] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [46] Togo A and Tanaka I 2015 Scr. Mater. 108 1 [47] Li N, Wang L, Dai J, Wang X, Wang J, Kim M J and Zhang H 2019 Diam. Relat. Mater. 100 107565 [48] Huang G F, Jia X P, Li Y, Hu M H, Li Z C, Yan B M and Ma H A 2011 Chin. Phys. B 20 078103 [49] Yamamoto Y, Imai T, Tanabe K, Tsuno T, Kumazawa Y and Fujimori N 1997 Diamond. Relat. Mater. 6 1057 [50] Jia J, Hei X, Yang X, et al. 2024 Materials 17 1992 [51] Cui W, Xu H, Chen J, et al. 2016 International Journal of Minerals, Metallurgy, and Materials 23 716 [52] Zhou H, Ran M, Li Y, et al. 2021 Journal of Materials Processing Technology 297 117267 [53] Wei C, Xu X, Wei B, et al. 2020 Diamond and Related Materials 104 107760 [54] Dou W, Zhu C, Wu X, Yang X, Fa W, Zhang Y, Tong J, Zhu G and Zheng Z 2023 Carbon Energy 5 e379 [55] Sang J, Chen Q, Yang W, Zhu J, Fu L, Li D and Zhou L 2022 Surfaces and Interfaces 31 102019 [56] Li X, Yang W, Sang J, Zhu J, Fu L, Li D and Zhou L 2020 J. Alloys Compd. 846 156258 [57] Mizuuchi K, Inoue K, Agari Y, Morisada Y, Sugioka M, Tanaka M, Takeuchi T, Tani J, Kawahara M and Makino Y 2011 Composites Part B: Engineering 42 825 [58] Tan Z, Xiong D B, Fan G, Chen Z, Guo Q, Guo C, Ji G, Li Z and Zhang D 2018 J. Mater. Sci. 53 6602 [59] Zhao J, Yun S, Li Q and Wang L 2024 Heliyon 10 e37391 [60] Jia J, Hei X, Yang X, Zhao W, Wang Y, Zhuo Q, Li Y, Dong H, Liu F, Li Y and Yan X 2024 Materials 17 1992 [61] Zhou H, Jia Q, Sun J, Li Y, He Y, Bi W and Zheng W 2024 Materials 17 1485 [62] Haruna K, Maeta H, Kazutoshi Ohashi K O and Takuro Koike T K 1992 Jpn. J. Appl. Phys. 31 2527 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|