Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 028201    DOI: 10.1088/1674-1056/ad9e99
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Significant increase in thermal conductivity of cathode material LiFePO4 by Na substitution:A machine learning interatomic potential-assisted investigation

Shi-Yi Li(李诗怡), Qian Liu(刘骞), Yu-Jia Zeng(曾育佳), Guofeng Xie(谢国锋)†, and Wu-Xing Zhou(周五星)‡
School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, China
Abstract  LiFePO$_{4}$ is a cathode material with good thermal stability, but low thermal conductivity is a critical problem. In this study, we employ a machine learning potential approach based on first-principles methods combined with the Boltzmann transport theory to investigate the influence of Na substitution on the thermal conductivity of LiFePO$_{4}$ and the impact of Li-ion de-embedding on the thermal conductivity of Li$_{3/4}$Na$_{1/4}$FePO$_{4}$, with the aim of enhancing heat dissipation in Li-ion batteries. The results show a significant increase in thermal conductivity due to an increase in phonon group velocity and a decrease in phonon anharmonic scattering by Na substitution. In addition, the thermal conductivity increases significantly with decreasing Li-ion concentration due to the increase in phonon lifetime. Our work guides the improvement of the thermal conductivity of LiFePO$_{4}$, emphasizing the crucial roles of both substitution and Li-ion detachment/intercalation for the thermal management of electrochemical energy storage devices.
Keywords:  lattice thermal conductivity      machine learning potential      LiFePO$_{4}$  
Received:  26 September 2024      Revised:  29 November 2024      Accepted manuscript online:  13 December 2024
PACS:  82.47.Aa (Lithium-ion batteries)  
  74.25.fc (Electric and thermal conductivity)  
  44.10.+i (Heat conduction)  
  66.70.-f (Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 12074115) and the Science and Technology Innovation Program of Hunan Province (Grant No. 2023RC3176).
Corresponding Authors:  Guofeng Xie, Wu-Xing Zhou     E-mail:  gfxie@xtu.edu.cn;wuxingzhou@hnu.edu.cn

Cite this article: 

Shi-Yi Li(李诗怡), Qian Liu(刘骞), Yu-Jia Zeng(曾育佳), Guofeng Xie(谢国锋), and Wu-Xing Zhou(周五星) Significant increase in thermal conductivity of cathode material LiFePO4 by Na substitution:A machine learning interatomic potential-assisted investigation 2025 Chin. Phys. B 34 028201

[1] Nitta N, Wu F, Lee J T and Yushin G 2015 Mater. Today 18 252
[2] Zhu T, Sternlicht H, Ha Y, Fang C, Liu D, Savitzky B H and Liu G 2023 Nat. Energy 8 129
[3] Opitz A, Badami P, Shen L, Vignarooban K and Kannan A M 2017 Renew. Sust. Energ. Rev. 68 685
[4] He L, Gu Z, Zhang Y, Jing H and Li P 2023 Energy Fuels 37 4835
[5] Yan K, Chen Q, Zhang Z, Nie H,Wang R and Xu Z 2023 Green Chemistry 25 9156
[6] Syed M A, Salehabadi M and Obrovac M N 2024 Chem. Mater. 36 803
[7] Qiu X, Wang C, Xie L, Zhu L, Cao X and Ji X 2024 J. Power. Sources 60 234365
[8] Yang C C, Jang J H and Jiang J R 2014 Energy Procedia 61 1402
[9] Liu Y, Qin W, Zhang D, Feng L and Wu L 2021 Progress in Natural Science: Materials International 31 14
[10] Xu J and Chen G 2010 Physica B 405 803
[11] Wang Z H, Yuan L X,Wu M, Sun D and Huang Y H 2011 Electrochim. Acta 56 8477
[12] Madram A R and Faraji M 2017 New J. Chem. 41 12190
[13] Cong J, Luo S H, Li K,Wang J C,Wang Y F, Yan S X and Li PW2023 Ionics 29 3915
[14] Shah K, Vishwakarma V and Jain A 2016 J. Electrochem. En. Conv. Stor. 13 030801
[15] Feng T, O’hara A and Pantelides S T 2020 Nano Energy 75 104916
[16] Zhang Z and Cao B 2022 Sci. China Phys. Mech. Astron. 65 117003
[17] Qian X, Gu X, Dresselhaus M S and Yang R 2016 J. Phys. Chem. Lett. 7 4744
[18] Zhang Z, Guo Y, Bescond M, Chen J, Nomura M and Volz S 2022 Phys. Rev. Lett. 128 015901
[19] Meng H, Yu X, Feng H, Xue Z and Yang N 2019 Inter. J. Heat & Mass Trans. 137 1241
[20] Mistry A N, Palle H R and Mukherjee P P 2019 Appl. Phys. Lett. 114 023901
[21] Wu C W, Ren X, Li S Y, Zeng Y J, Zhou W X and Xie G F 2022 Appl. Phys. Lett. 121 172201
[22] Wu C, Huang W, Liu L, Wang H, Zeng Y, Xie J, Jin C and Zhang Z 2016 CrystEngComm 18 7707
[23] Whittingham M S 2004 Chem. Rev. 104 4271
[24] Padhi A K, Nanjundaswamy K S and Goodenough J B 1997 J. Electrochem. Soc. 144 1188
[25] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[26] Kresse G and Furthmüller J 1996 Computational Materials Science 6 15
[27] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[28] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[29] Ouyang Y L, Yu C, Yan G and Chen J 2021 Front. Phys. 16 43200
[30] Liu Y, Liang H, Yang L, Yang G, Yang H, Song S, Mei Z, Csányi G and Cao B 2023 Adv. Mater. 35 2210873
[31] Ouyang Y, Yu C, He J, Jiang P, Ren W and Chen J 2022 Phys. Rev. B 105 115202
[32] Togo A and Tanaka I 2015 Scrip. Mater. 108 1
[33] Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747
[34] Shu Z, Xu H, Yan H and Cai Y 2024 Front. Phys. 19 33202
[35] Zhu X L, Liu P F, Zhang J, Zhang P, Zhou W X, Xie G F and Wang B T 2019 Nanoscale 11 19923
[36] Chen X K, Zhang E M, Wu D and Chen K Q 2023 Phys. Rev. Appl. 19 044052
[37] Xie Z X, Chen X K, Yu X, Deng Y X, Zhang Y, Zhou W X and Jia P Z 2024 J. Appl. Phys. 135 024302
[38] Zhou W, Cheng Y, Chen K, Xie G F, Wang T and Zhang G 2020 Adv. Funct. Mater. 30 1903829
[39] Chen X K, Hu X Y, Jia P, Xie Z X and Liu J 2021 Inter. J. Mech. Sci. 206 106576
[40] Zhu X L, Yang H, Zhou W X, Wang B, Xu N and Xie G F 2020 ACS Appl. Mater. Interfaces 12 36102
[41] Gan Y,Wu CW, Xie Z X, Deng Y X, Zhang Y, ZhouWX and Chen X K 2022 Langmuir 38 7733
[42] Zhu X L, Liu P Fm Xie G F and Wang B T 2019 Phys. Chem. Chem. Phys. 21 10931
[43] Zhu X L, Liu P F, Xie G F, Zhou W X, Wang B T and Zhang G 2019 Nanomaterials 9 597
[44] Jia P Z, Xie Z X, Deng Y X, Zhang Y, Tang L M, Zhou W X and Chen K Q 2022 Appl. Phys. Lett. 121 043901
[45] Wu C W, Ren X, Xie G F, Zhou W X, Zhang G and Chen K Q 2022 Phys. Rev. Appl. 18 014053
[46] Delmas C, Maccario M, Croguennec L, Le C F and Weill F 2008 Nat. Mater. 7 665
[47] Lee S, Esfarjani K, Luo T, Zhou J, Tian Z and Chen G 2014 Nat. Commun. 5 3525
[48] Zeier W G, Zevalkink A, Gibbs Z M, Hautier G, Kanatzidis M G and Snyder G J 2016 Angew. Chem. Int. Ed. 55 6826
[49] Maintz S, Deringer V L, Tchougréeff A L and Dronskowski R 2016 J. Comput. Chem. 37 1030
[50] Deringer V L, Tchougréeff A L and Dronskowski R 2011 J. Phys. Chem. A 115 5461
[51] Liu X, Jiao Y, Zheng Y, Jaroniec M and Qiao S Z 2019 J. Am. Chem. Soc. 141 9664
[1] Thermal conductivity of GeTe crystals based on machine learning potentials
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Weifeng Li(李伟峰), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(4): 047402.
[2] Phonon transport properties of Janus Pb2XAs(X = P, Sb, and Bi) monolayers: A DFT study
Jiaxin Geng(耿嘉鑫), Pei Zhang(张培), Zhunyun Tang(汤准韵), and Tao Ouyang(欧阳滔). Chin. Phys. B, 2024, 33(4): 046501.
[3] Geometries and electronic structures of ZrnCu(n =2-12) clusters: A joint machine-learning potential density functional theory investigation
Yizhi Wang(王一志), Xiuhua Cui(崔秀花), Jing Liu(刘静), Qun Jing(井群), Haiming Duan(段海明), and Haibin Cao(曹海宾). Chin. Phys. B, 2024, 33(1): 016109.
[4] An artificial neural network potential for uranium metal at low pressures
Maosheng Hao(郝茂生) and Pengfei Guan(管鹏飞). Chin. Phys. B, 2023, 32(9): 098401.
[5] Stress effect on lattice thermal conductivity of anode material NiNb2O6 for lithium-ion batteries
Ao Chen(陈奥), Hua Tong(童话), Cheng-Wei Wu(吴成伟), Guofeng Xie(谢国锋), Zhong-Xiang Xie(谢忠祥), Chang-Qing Xiang(向长青), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2023, 32(5): 058201.
[6] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), and Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[7] Strong anharmonicity-assisted low lattice thermal conductivities and high thermoelectric performance in double-anion Mo2AB2 (A = S, Se, Te; B=Cl, Br, I) semiconductors
Haijun Liao(廖海俊), Le Huang(黄乐), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Zhipeng Sun(孙志鹏), and Jingbo Li(李京波). Chin. Phys. B, 2023, 32(10): 107304.
[8] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[9] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[10] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[11] Thermoelectric properties of orthorhombic silicon allotrope Si (oP32) from first-principles calculations
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chao-Yu He(何朝宇), Jin Li(李金), Chun-Xiao Zhang(张春小), and Jian-Xin Zhong(钟建新). Chin. Phys. B, 2020, 29(11): 118401.
[12] Synthesis and thermoelectric properties of Nd-single filled p-type skutterudites
Hong Wu(吴宏), Nusrat Shaheen, Heng-Quan Yang(杨恒全), Kun-Ling Peng(彭坤岭), Xing-Chen Shen(沈星辰), Guo-Yu Wang(王国玉), Xu Lu(卢旭), Xiao-Yuan Zhou(周小元). Chin. Phys. B, 2018, 27(4): 047203.
[13] Study of lattice thermal conductivity of alpha-zirconium by molecular dynamics simulation
Wu Tian-Yu (武天宇), Lai Wen-Sheng (赖文生), Fu Bao-Qin (付宝勤). Chin. Phys. B, 2013, 22(7): 076601.
[14] Effect of phonon scattering mechanisms on the lattice thermal conductivity of skutterudite-related compound
Yang Lei (杨磊), Wu Jian-Sheng (吴建生), Zhang Lan-Ting (张澜庭). Chin. Phys. B, 2004, 13(4): 516-521.
No Suggested Reading articles found!