INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Significant increase in thermal conductivity of cathode material LiFePO4 by Na substitution:A machine learning interatomic potential-assisted investigation |
Shi-Yi Li(李诗怡), Qian Liu(刘骞), Yu-Jia Zeng(曾育佳), Guofeng Xie(谢国锋)†, and Wu-Xing Zhou(周五星)‡ |
School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, China |
|
|
Abstract LiFePO$_{4}$ is a cathode material with good thermal stability, but low thermal conductivity is a critical problem. In this study, we employ a machine learning potential approach based on first-principles methods combined with the Boltzmann transport theory to investigate the influence of Na substitution on the thermal conductivity of LiFePO$_{4}$ and the impact of Li-ion de-embedding on the thermal conductivity of Li$_{3/4}$Na$_{1/4}$FePO$_{4}$, with the aim of enhancing heat dissipation in Li-ion batteries. The results show a significant increase in thermal conductivity due to an increase in phonon group velocity and a decrease in phonon anharmonic scattering by Na substitution. In addition, the thermal conductivity increases significantly with decreasing Li-ion concentration due to the increase in phonon lifetime. Our work guides the improvement of the thermal conductivity of LiFePO$_{4}$, emphasizing the crucial roles of both substitution and Li-ion detachment/intercalation for the thermal management of electrochemical energy storage devices.
|
Received: 26 September 2024
Revised: 29 November 2024
Accepted manuscript online: 13 December 2024
|
PACS:
|
82.47.Aa
|
(Lithium-ion batteries)
|
|
74.25.fc
|
(Electric and thermal conductivity)
|
|
44.10.+i
|
(Heat conduction)
|
|
66.70.-f
|
(Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 12074115) and the Science and Technology Innovation Program of Hunan Province (Grant No. 2023RC3176). |
Corresponding Authors:
Guofeng Xie, Wu-Xing Zhou
E-mail: gfxie@xtu.edu.cn;wuxingzhou@hnu.edu.cn
|
Cite this article:
Shi-Yi Li(李诗怡), Qian Liu(刘骞), Yu-Jia Zeng(曾育佳), Guofeng Xie(谢国锋), and Wu-Xing Zhou(周五星) Significant increase in thermal conductivity of cathode material LiFePO4 by Na substitution:A machine learning interatomic potential-assisted investigation 2025 Chin. Phys. B 34 028201
|
[1] Nitta N, Wu F, Lee J T and Yushin G 2015 Mater. Today 18 252 [2] Zhu T, Sternlicht H, Ha Y, Fang C, Liu D, Savitzky B H and Liu G 2023 Nat. Energy 8 129 [3] Opitz A, Badami P, Shen L, Vignarooban K and Kannan A M 2017 Renew. Sust. Energ. Rev. 68 685 [4] He L, Gu Z, Zhang Y, Jing H and Li P 2023 Energy Fuels 37 4835 [5] Yan K, Chen Q, Zhang Z, Nie H,Wang R and Xu Z 2023 Green Chemistry 25 9156 [6] Syed M A, Salehabadi M and Obrovac M N 2024 Chem. Mater. 36 803 [7] Qiu X, Wang C, Xie L, Zhu L, Cao X and Ji X 2024 J. Power. Sources 60 234365 [8] Yang C C, Jang J H and Jiang J R 2014 Energy Procedia 61 1402 [9] Liu Y, Qin W, Zhang D, Feng L and Wu L 2021 Progress in Natural Science: Materials International 31 14 [10] Xu J and Chen G 2010 Physica B 405 803 [11] Wang Z H, Yuan L X,Wu M, Sun D and Huang Y H 2011 Electrochim. Acta 56 8477 [12] Madram A R and Faraji M 2017 New J. Chem. 41 12190 [13] Cong J, Luo S H, Li K,Wang J C,Wang Y F, Yan S X and Li PW2023 Ionics 29 3915 [14] Shah K, Vishwakarma V and Jain A 2016 J. Electrochem. En. Conv. Stor. 13 030801 [15] Feng T, O’hara A and Pantelides S T 2020 Nano Energy 75 104916 [16] Zhang Z and Cao B 2022 Sci. China Phys. Mech. Astron. 65 117003 [17] Qian X, Gu X, Dresselhaus M S and Yang R 2016 J. Phys. Chem. Lett. 7 4744 [18] Zhang Z, Guo Y, Bescond M, Chen J, Nomura M and Volz S 2022 Phys. Rev. Lett. 128 015901 [19] Meng H, Yu X, Feng H, Xue Z and Yang N 2019 Inter. J. Heat & Mass Trans. 137 1241 [20] Mistry A N, Palle H R and Mukherjee P P 2019 Appl. Phys. Lett. 114 023901 [21] Wu C W, Ren X, Li S Y, Zeng Y J, Zhou W X and Xie G F 2022 Appl. Phys. Lett. 121 172201 [22] Wu C, Huang W, Liu L, Wang H, Zeng Y, Xie J, Jin C and Zhang Z 2016 CrystEngComm 18 7707 [23] Whittingham M S 2004 Chem. Rev. 104 4271 [24] Padhi A K, Nanjundaswamy K S and Goodenough J B 1997 J. Electrochem. Soc. 144 1188 [25] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [26] Kresse G and Furthmüller J 1996 Computational Materials Science 6 15 [27] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [28] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [29] Ouyang Y L, Yu C, Yan G and Chen J 2021 Front. Phys. 16 43200 [30] Liu Y, Liang H, Yang L, Yang G, Yang H, Song S, Mei Z, Csányi G and Cao B 2023 Adv. Mater. 35 2210873 [31] Ouyang Y, Yu C, He J, Jiang P, Ren W and Chen J 2022 Phys. Rev. B 105 115202 [32] Togo A and Tanaka I 2015 Scrip. Mater. 108 1 [33] Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747 [34] Shu Z, Xu H, Yan H and Cai Y 2024 Front. Phys. 19 33202 [35] Zhu X L, Liu P F, Zhang J, Zhang P, Zhou W X, Xie G F and Wang B T 2019 Nanoscale 11 19923 [36] Chen X K, Zhang E M, Wu D and Chen K Q 2023 Phys. Rev. Appl. 19 044052 [37] Xie Z X, Chen X K, Yu X, Deng Y X, Zhang Y, Zhou W X and Jia P Z 2024 J. Appl. Phys. 135 024302 [38] Zhou W, Cheng Y, Chen K, Xie G F, Wang T and Zhang G 2020 Adv. Funct. Mater. 30 1903829 [39] Chen X K, Hu X Y, Jia P, Xie Z X and Liu J 2021 Inter. J. Mech. Sci. 206 106576 [40] Zhu X L, Yang H, Zhou W X, Wang B, Xu N and Xie G F 2020 ACS Appl. Mater. Interfaces 12 36102 [41] Gan Y,Wu CW, Xie Z X, Deng Y X, Zhang Y, ZhouWX and Chen X K 2022 Langmuir 38 7733 [42] Zhu X L, Liu P Fm Xie G F and Wang B T 2019 Phys. Chem. Chem. Phys. 21 10931 [43] Zhu X L, Liu P F, Xie G F, Zhou W X, Wang B T and Zhang G 2019 Nanomaterials 9 597 [44] Jia P Z, Xie Z X, Deng Y X, Zhang Y, Tang L M, Zhou W X and Chen K Q 2022 Appl. Phys. Lett. 121 043901 [45] Wu C W, Ren X, Xie G F, Zhou W X, Zhang G and Chen K Q 2022 Phys. Rev. Appl. 18 014053 [46] Delmas C, Maccario M, Croguennec L, Le C F and Weill F 2008 Nat. Mater. 7 665 [47] Lee S, Esfarjani K, Luo T, Zhou J, Tian Z and Chen G 2014 Nat. Commun. 5 3525 [48] Zeier W G, Zevalkink A, Gibbs Z M, Hautier G, Kanatzidis M G and Snyder G J 2016 Angew. Chem. Int. Ed. 55 6826 [49] Maintz S, Deringer V L, Tchougréeff A L and Dronskowski R 2016 J. Comput. Chem. 37 1030 [50] Deringer V L, Tchougréeff A L and Dronskowski R 2011 J. Phys. Chem. A 115 5461 [51] Liu X, Jiao Y, Zheng Y, Jaroniec M and Qiao S Z 2019 J. Am. Chem. Soc. 141 9664 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|