Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 097401    DOI: 10.1088/1674-1056/add907
Special Issue: SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas
SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas Prev   Next  

Charge doping induced thermal switches with a high switching ratio in monolayer MoS2

Chen Gui(桂琛), Zhi-Fu Duan(段志福), Chang-Hao Ding(丁长浩), Hao Chen(陈浩), Yuan Yao(姚远), Nan-Nan Luo(罗南南)†, Jiang Zeng(曾犟), Li-Ming Tang(唐黎明), and Ke-Qiu Chen(陈克求)‡
Department of Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
Abstract  The thermal switch plays a crucial role in regulating system temperature, protecting devices from overheating, and improving energy efficiency. Achieving a high thermal switching ratio is essential for its practical application. In this study, by utilizing first-principles calculations and semi-classical Boltzmann transport theory, it is found that hole doping with an experimentally achievable concentration of $1.83 \times 10^{14}$ cm$^{-2}$ can reduce the lattice thermal conductivity of monolayer MoS$_2$ from 151.79 W$\cdot$m$^{-1}\cdot$K$^{-1}$ to 12.19 W$\cdot$m$^{-1}\cdot$K$^{-1}$, achieving a high thermal switching ratio of 12.5. The achieved switching ratio significantly surpasses previously reported values, including those achieved by extreme strain methods. This phenomenon mainly arises from the enhanced lattice anharmonicity, which is primarily contributed by the S atoms. These results indicate that hole doping is an effective method for tuning the lattice thermal conductivity of materials, and demonstrate that monolayer MoS$_2$ is a potential candidate material for thermal switches.
Keywords:  thermal switching ratio      thermal conductivity      anharmonicity      two-dimensional material  
Received:  15 March 2025      Revised:  30 April 2025      Accepted manuscript online:  15 May 2025
PACS:  74.25.Kc (Phonons)  
  66.70.-f (Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  74.25.fc (Electric and thermal conductivity)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12104145 and 12374040).
Corresponding Authors:  Nan-Nan Luo, Ke-Qiu Chen     E-mail:  luonn@hnu.edu.cn;keqiuchen@hnu.edu.cn

Cite this article: 

Chen Gui(桂琛), Zhi-Fu Duan(段志福), Chang-Hao Ding(丁长浩), Hao Chen(陈浩), Yuan Yao(姚远), Nan-Nan Luo(罗南南), Jiang Zeng(曾犟), Li-Ming Tang(唐黎明), and Ke-Qiu Chen(陈克求) Charge doping induced thermal switches with a high switching ratio in monolayer MoS2 2025 Chin. Phys. B 34 097401

[1] Lu Q, Huberman S, Zhang H, Song Q, Wang J, Vardar G, Hunt A, Waluyo I, Chen G and Yildiz B 2020 Nat. Mater. 19 655
[2] Hentrich R,Wolter A U B, Zotos X, BrenigW, Nowak D, Isaeva A, Doert T, Banerjee A, Lampen-Kelley P, Mandrus D G, Nagler S E, Sears J, Kim Y J, Büchner B and Hess C 2018 Phys. Rev. Lett. 120 117204
[3] Meng X H, Pandey T, Jeong J, Fu S Y, Yang J, Chen K, Singh A, He F, Xu X C, Zhou J S, Hsieh W P, Singh A K, Lin J F and Wang Y G 2019 Phys. Rev. Lett. 122 155901
[4] Pan H, Ding Z K, Zeng B W, Luo N N, Zeng J, Tang L M and Chen K Q 2023 Phys. Rev. B 107 104303
[5] Pan H, Tang L M and Chen K Q 2022 Phys. Rev. B 105 064401
[6] Jia J J, Li S C, Chen X and Shigesato Y 2024 Adv. Funct. Mater. 34 2406667
[7] Lian M, Geng Y, Chen Y J, Chen Y and Lü J T 2024 Phys. Rev. Lett. 133 116303
[8] Swoboda T, Klinar K, Yalamarthy A S, Kitanovski A and Rojo M M 2021 Adv. Electron. Mater. 7 2170008
[9] Shin J, Sung J, Kang M, Xie X, Lee B, Lee K M, White T J, Leal C, Sottos N R, Braun P V and Cahill D G 2019 Proc. Nat. Acad. Sci. USA 116 5973
[10] Hu P, Wang J, Zhang P, Wu F, Cheng Y, Wang J and Sun Z 2023 Adv. Mater. 35 2207638
[11] Du T T, Xiong Z X, Delgado L, Liao W Z, Peoples J, Kantharaj R, Chowdhury P R, Marconnet A and Ruan X L 2021 Nat. Commun. 12 4915
[12] Zheng R T, Gao J W, Wang J J and Chen G 2011 Nat. Commun. 2 289
[13] Wang X M, Fan C, Zhao Z Y, Tao W, Liu X G, Ke W P, Zhao X and Sun X F 2010 Phys. Rev. B 82 094405
[14] McGuire C, Sawchuk K and Kavner A 2018 J. Appl. Phys. 124 115902
[15] Gu X K, Wei Y J, Yin X B, Li B W and Yang R G 2018 Rev. Mod. Phys. 90 041002
[16] Kim S E, Mujid F, Rai A, Eriksson F, Suh J, Poddar P, Ray A, Park C, Fransson E, Zhong Y, Muller D A, Erhart P, Cahill D G and Park J 2021 Nature 597 660
[17] He R, Wang D, Luo N N, Zeng J, Chen K Q and Tang L M 2023 Phys. Rev. Lett. 130 046401
[18] Liu W, Ding Z K, Luo N, Zeng J, Tang L M and Chen K Q 2024 Phys. Rev. B 109 115422
[19] Li Q Q, Liu W W, Ding Z K, Pan H, Cao X H, Xiao W H, Luo N N, Zeng J, Tang L M, Li B, Chen K Q and Duan X D 2023 Appl. Phys. Lett. 122 121902
[20] Xiao W H, Yang K, D’Agosta R, Xu H R, Ouyang G, Zhou G, Chen K Q and Tang L M 2024 Phys. Rev. B 109 115427
[21] Li Q Q, Duan Z F, Liu W W, Yang R, Li B and Chen K Q 2025 Nano Res. 18 94907188
[22] Wang Y, Luo N, Zeng J, Tang L M and Chen K Q 2023 Phys. Rev. B 108 054401
[23] Ding Z K, Zeng Y J, LiuW, Tang L M and Chen K Q 2024 Adv. Funct. Mater. 34 2401684
[24] Duan Z F, Ding C H, Ding Z K, Xiao W H, Xie F, Luo N N, Zeng J, Tang L M and Chen K Q 2024 Chin. Phys. B 33 087302
[25] Luo N, Zeng J, Tang LMand Chen K Q 2025 Phys. Rev. B 111 125416
[26] Liu W, Ding Z K, Luo N, Zeng J, Tang L M and Chen K Q 2025 Phys. Rev. B 111 115407
[27] Liu C H, Si Y Y, Zhang H, Wu C, Deng S Q, Dong Y Q, Li Y J, Zhuo M, Fan N B, Xu B, Lu P, Zhang L F, Lin X, Liu X J, Yang J K, Luo Z L, Das S, Bellaiche L, Chen Y F and Chen Z H 2023 Science 382 1265
[28] Duan Z F, Ding Z K, Xie F, Zeng J, Tang L M, Luo N N and Chen K Q 2025 Appl. Phys. Lett. 126 022205
[29] Sangwan V K, Lee H S, Bergeron H, Balla I, Beck M E, Chen K S and Hersam M C 2018 Nature 554 500
[30] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[31] Yue Q, Kang J, Shao Z Z, Zhang X A, Chang S L, Wang G, Qin S Q and Li J B 2012 Phys. Lett. A 376 1166
[32] Jia P Z, Zeng Y J, Wu D, Pan H, Cao X H, Zhou W X, Xie Z X, Zhang J X and Chen K Q 2020 J. Phys.: Condens. Mat. 32 055302
[33] Wang J, Cao X H, Zeng Y J, Luo N N, Tang L M and Chen K Q 2023 Appl. Surf. Sci. 612 155914
[34] Ding Z W, Pei Q X, Jiang J W and Zhang Y W 2015 J. Phys. Chem. C 119 16358
[35] Zhu G H, Liu J, Zheng Q Y, Zhang R G, Li D Y, Banerjee D and Cahill D G 2016 Nat. Commun. 7 13211
[36] Lin Y C, Dumcencon D O, Huang Y S and Suenaga K 2014 Nat. Nanotechnol. 9 391
[37] Hedau B, Kang B C and Ha T J 2022 ACS Nano 16 18355
[38] Gao H Q, Hu M A, Ding J F, Xia B L, Yuan G L, Sun H S, Xu Q H, Zhao S Y, Jiang Y W, Wu H, Yuan M, Li J H, Li B X, Zhao J, Rao D W and Xie Y N 2023 Adv. Funct. Mater. 33 2213410
[39] Kresse and Furthmuller 1996 Phys. Rev. B 54 11169
[40] Blochl 1994 Phys. Rev. B 50 17953
[41] Perdew, Burke and Ernzerhof 1996 Phys. Rev. Lett. 77 3865
[42] Li H, Tang Z, Fu J, Dong W H, Zou N, Gong X, Duan W and Xu Y 2024 Phys. Rev. Lett. 132 096401
[43] Togo A 2023 J. Phys. Soc. Jpn. 92 012001
[44] Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747
[45] Ekuma C E, Najmaei S and Dubey M 2019 Mater. Today Commun. 19 383
[46] Liu J, Choi G M and Cahill D G 2014 J. Appl. Phys. 116 233107
[47] Zhang X, Sun D Z, Li Y L, Lee G H, Cui X, Chenet D, You Y M, Heinz T F and Hone J C 2015 ACS Appl. Mater. Interfaces 7 25923
[48] Gu X K, Li B W and Yang R G 2016 J. Appl. Phys. 119 085106
[49] Peng B, Ning Z Y, Zhang H, Shao H Z, Xu Y F, Ni G and Zhu H Y 2016 J. Phys. Chem. C 120 29324
[50] Zhou J, Shin H D, Chen K, Song B, Duncan R A, Xu Q, Maznev A A, Nelson K A and Chen G 2020 Nat. Commun. 11 6040
[51] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[52] Wu Y, Shi W, He C, Li J, Tang C and Ouyang T 2024 Appl. Phys. Lett. 124 202203
[53] Lane N J, Vogel S C, Hug G, Togo A, Chaput L, Hultman L and Barsoum M W 2012 Phys. Rev. B 86 214301
[1] Tunable thermal conductivity and mechanical properties of metastable silicon by phase engineering
Guoshuai Du(杜国帅), Yubing Du(杜玉冰), Jiaxin Ming(明嘉欣), Zhixi Zhu(朱芷希), Jiaohui Yan(闫皎辉), Jiayin Li(李嘉荫), Tiansong Zhang(张天颂), Lina Yang(杨哩娜), Ke Jin(靳柯), and Yabin Chen(陈亚彬). Chin. Phys. B, 2025, 34(9): 096401.
[2] Unique high-energy excitons in two-dimensional transition metal dichalcogenides
Yongsheng Gao(高永盛), Yuanzheng Li(李远征), Weizhen Liu(刘为振), Chuxin Yan(闫楚欣), Qingbin Wang(王庆彬), Wei Xin(辛巍), Haiyang Xu(徐海阳), and Yichun Liu(刘益春). Chin. Phys. B, 2025, 34(9): 097102.
[3] Exciton insulators in two-dimensional systems
Huaiyuan Yang(杨怀远), Xi Dai(戴希), and Xin-Zheng Li(李新征). Chin. Phys. B, 2025, 34(9): 097301.
[4] Thermal transport properties of 2D narrow bandgap semiconductor Ca3N2, Ba3P2, and Ba3As2: Machine learning potential study
Wenlong Li(李文龙), Yu Liu(刘余), Zhendong Li(李振东), Pei Zhang(张培), Xinghua Li(李兴华), and Tao Ouyang(欧阳滔). Chin. Phys. B, 2025, 34(9): 096302.
[5] Preparation of high-performance Cu2Se thermoelectric materials by the KCl flux method and research on thermoelectric transport performance
Yonggui Tao(陶永贵), Chisheng Deng(邓池升), Jicheng Li(李吉成), Wen Ge(葛文), Ying Zhang(张盈), Yujie Xiang(向玉婕), and Shukang Deng(邓书康). Chin. Phys. B, 2025, 34(9): 097306.
[6] Hyperparameter optimization and force error correction of neuroevolution potential for predicting thermal conductivity of wurtzite GaN
Zhuo Chen(陈卓), Yuejin Yuan(袁越锦), Wenyang Ding(丁文扬), Shouhang Li(李寿航), Meng An(安盟), and Gang Zhang(张刚). Chin. Phys. B, 2025, 34(8): 086110.
[7] Enhancement of thermal conductivity in diamond/Al composites through vacuum-pressure thermal diffusion sintering
Wenxia Zhang(张文霞), Weixia Shen(沈维霞), Chao Fang(房超), Ye Wang(王烨), Yuewen Zhang(张跃文), Liangchao Chen(陈良超), Qianqian Wang(王倩倩), Kenan Li(黎克楠), Biao Wan(万彪), and Zhuangfei Zhang(张壮飞). Chin. Phys. B, 2025, 34(7): 070703.
[8] Unveiling the thermal transport mechanisms in novel carbon-based graphene-like materials using machine-learning potential
Yao-Yuan Zhang(章耀元), Meng-Qiu Long(龙孟秋), Sai-Jie Cheng(程赛杰), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2025, 34(6): 067101.
[9] Unveiling the role of high-order anharmonicity in thermal expansion: A first-principles perspective
Tianxu Zhang(张天旭), Kun Zhou(周琨), Yingjian Li(李英健), Chenhao Yi(易晨浩), Muhammad Faizan, Yuhao Fu(付钰豪), Xinjiang Wang(王新江), and Lijun Zhang(张立军). Chin. Phys. B, 2025, 34(4): 046301.
[10] An ab initio dataset of size-dependent effective thermal conductivity for advanced technology transistors
Han Xie(谢涵), Ru Jia(贾如), Yonglin Xia(夏涌林), Lei Li(李磊), Yue Hu(胡跃), Jiaxuan Xu(徐家璇), Yufei Sheng(盛宇飞), Yuanyuan Wang(王元元), and Hua Bao(鲍华). Chin. Phys. B, 2025, 34(4): 046501.
[11] Significant increase in thermal conductivity of cathode material LiFePO4 by Na substitution: A machine learning interatomic potential-assisted investigation
Shi-Yi Li(李诗怡), Qian Liu(刘骞), Yu-Jia Zeng(曾育佳), Guofeng Xie(谢国锋), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2025, 34(2): 028201.
[12] GaInX3 (X = S, Se, Te): Ultra-low thermal conductivity and excellent thermoelectric performance
Zhi-Fu Duan(段志福), Chang-Hao Ding(丁长浩), Zhong-Ke Ding(丁中科), Wei-Hua Xiao(肖威华), Fang Xie(谢芳), Nan-Nan Luo(罗南南), Jiang Zeng(曾犟), Li-Ming Tang(唐黎明), and Ke-Qiu Chen(陈克求). Chin. Phys. B, 2024, 33(8): 087302.
[13] Theoretical study on the effective thermal conductivity of silica aerogels based on a cross-aligned and cubic pore model
Kuncan Zheng(郑坤灿), Zhendong Li(李震东), Yutong Cao(曹豫通), Ben Liu(刘犇)), and Junlei Hu(胡君磊). Chin. Phys. B, 2024, 33(6): 064401.
[14] Effect of strain on structure and electronic properties of monolayer C4N4
Hao Chen(陈昊), Ying Xu(徐瑛), Jia-Shi Zhao(赵家石), and Dan Zhou(周丹). Chin. Phys. B, 2024, 33(5): 057302.
[15] Anomalous valley Hall effect in two-dimensional valleytronic materials
Hongxin Chen(陈洪欣), Xiaobo Yuan(原晓波), and Junfeng Ren(任俊峰). Chin. Phys. B, 2024, 33(4): 047304.
No Suggested Reading articles found!