CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effect of strain on structure and electronic properties of monolayer C4N4 |
Hao Chen(陈昊)1, Ying Xu(徐瑛)1, Jia-Shi Zhao(赵家石)2,†, and Dan Zhou(周丹)1,‡ |
1 School of Physics, Changchun University of Science and Technology, Changchun 130022, China; 2 School of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, China |
|
|
Abstract The first-principles calculations are performed to examine structural, mechanical, and electronic properties at large strain for a monolayer C$_{4}$N$_{4}$, which has been predicted as an anchoring promising material to attenuate shuttle effect in Li-S batteries stemming from its large absorption energy and low diffusion energy barrier. Our results show that the ideal strengths of C$_{4}$N$_{4}$ under tension and pure shear deformation conditions reach 13.9 GPa and 12.5 GPa when the strains are 0.07 and 0.28, respectively. The folded five-membered rings and diverse bonding modes between carbon and nitrogen atoms enhance the ability to resist plastic deformation of C$_{4}$N$_{4}$. The orderly bond-rearranging behaviors under the weak tensile loading path along the [100] direction cause the impressive semiconductor-metal transition and inverse semiconductor-metal transition. The present results enrich the knowledge of the structure and electronic properties of C$_{4}$N$_{4}$ under deformations and shed light on exploring other two-dimensional materials under diverse loading conditions.
|
Received: 17 November 2023
Revised: 26 January 2024
Accepted manuscript online: 05 February 2024
|
PACS:
|
73.90.+f
|
(Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)
|
|
77.80.bn
|
(Strain and interface effects)
|
|
83.10.Tv
|
(Structural and phase changes)
|
|
87.15.Pc
|
(Electronic and electrical properties)
|
|
Fund: Project support by the National Natural Science Foundation of China (Grant Nos. 11704044 and 12074140). |
Corresponding Authors:
Jia-Shi Zhao, Dan Zhou
E-mail: zhaojiashi@cust.edu.cn;zhoudan@cust.edu.cn
|
Cite this article:
Hao Chen(陈昊), Ying Xu(徐瑛), Jia-Shi Zhao(赵家石), and Dan Zhou(周丹) Effect of strain on structure and electronic properties of monolayer C4N4 2024 Chin. Phys. B 33 057302
|
[1] Xu R, Zhai H, Wang D, Song X Q, Zhou D and Li Q 2023 ACS Mater. Lett. 5 2747 [2] Gu Z, Yu S, Xu Z, Wang Q, Duan T, Wang X, Liu S, Wang H and Du H 2022 Chin. Phys. B 31 086107 [3] Li Y, Zhu S, Wu E, Ding H, Lu J, Mu X, Chen L, Zhang Y, Palisaitis J, Chen K, Li M, Yan P, Persson P O Å, Hultman L, Eklund P, Du S, Kuang Y, Chai Z and Huang Q 2023 J. Phys. Chem. Lett. 14 481 [4] Shen J, Duan Q, Miao J, He S, He K, Dai W and Lu C 2023 Chin. Phys. B 32 096302 [5] Fan Y, Li L, Zhang Y, Zhang X, Geng D and Hu W 2022 Adv. Funct. Mater. 32 2111357 [6] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 [7] Hu C W, Yang Y, Hou C and Liang T X 2021 Comput. Mater. Sci. 194 110424 [8] Yuan H, Zhang W, Wang J G, Zhou G, Zhuang Z, Luo J, Huang H, Gan Y, Liang C, Xia Y, Zhang J and Tao X 2018 Energy Storage Mater. 10 1 [9] Li X and Zhi L 2018 Chem. Soc. Rev. 47 3189 [10] Shao B, Jiang X, Berges J, Meng S and Huang B 2023 Chin. Phys. Lett. 40 087303 [11] Luo Y, Wu M, Zhang D, Liu J, He Y, Zhang W, Liu S, Dong Y, Xiang C, Yang L, Liu H, Shu H, Wang X and Chen M 2023 ACS Sustain. Chem. 11 1087 [12] He C, Liang Y and Zhang W 2022 ACS Appl. Mater. Interfaces 14 29120 [13] Li T, He C and Zhang W 2019 J. Mater. Chem. A 7 4134 [14] Sun C, Guo W and Yao Y 2022 Chin. Phys. Lett. 39 087101 [15] Miao Y, Zhao Y, Zhang S, Shi R and Zhang T 2022 Adv. Mater. 34 2200868 [16] Liu C, Song X, Li Q, Ma Y and Chen C 2021 Chin. Phys. Lett. 38 086301 [17] Liu C F and Wang J 2022 Chin. Phys. Lett. 39 077301 [18] Ma J J, Wang Z Y, Xu S G, Gao Y X, Zhang Y Y, Dai Q, Lin X, Du S X, Ren J D and Gao H J 2022 Chin. Phys. Lett. 39 047403 [19] Liu L, Zhang S and Zhang H 2022 Chin. Phys. Lett. 39 056102 [20] Liu C, Song X, Li Q, Ma Y and Chen C 2019 Phys. Rev. Lett. 123 195504 [21] Liu C, Song X, Li Q, Ma Y and Chen C 2020 Phys. Rev. Lett. 124 147001 [22] Liu C, Zhai H, Sun Y, Gong W, Yan Y, Li Q and Zheng W 2018 Phys. Chem. Chem. Phys. 20 5952 [23] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 [24] Hongzhiwei Technology D S, Version 2021A, China, 2021. Available online: https://iresearch.net.cn/cloudSoftware [25] Wang Z, Li Z, Zhang Y and Liu W 2020 J. Chem. Phys. 153 164109 [26] Blöchl P E 1994 Phys. Rev. B 50 17953 [27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [28] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [29] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [30] Pan Z, Sun H and Chen C 2007 Phys. Rev. Lett. 98 135505 [31] Pan Z, Sun H, Zhang Y and Chen C 2009 Phys. Rev. Lett. 102 055503 [32] Ogata S, Li J, Hirosaki N, Shibutani Y and Yip S 2004 Phys. Rev. B 70 104104 [33] Roundy D, Krenn C R, Cohen M L and Morris J W 1999 Phys .Rev. Lett. 82 2713 [34] An Q, Goddard W A and Cheng T 2014 Phys. Rev. Lett. 113 095501 [35] Han Z, Liu H, Li Q, Zhou D and Lv J 2021 Chin. Phys. Lett. 38 046201 [36] Zhang Y, Sun H and Chen C 2006 Phys. Rev. B 73 144115 [37] Telling R H, Pickard C J, Payne M C and Field J E 2000 Phys. Rev. Lett. 84 5160 [38] Liang H, Li H, Li Q and Chen C 2020 Phys. Rev. B 102 134105 [39] Fang R, Lu C, Chen A, Wang K, Huang H, Gan Y, Liang C, Zhang J, Tao X, Xia Y and Zhang W 2020 ChemSusChem 13 1409 [40] Carvalho A, Wang M, Zhu X, Rodin A S, Su H and Neto A C 2016 Nat. Rev. Mater. 1 16061 [41] Muralidharan N, Carter R, Oakes L, Cohn A P and Pint C L 2016 Sci. Rep. 6 27542 [42] Amit B, Daniel B, Zhang H T, Muk-Fung Y, Liu J B, Dong J C, Ding F, Lu J, Dao M, Zhang W J, Lu Y and Subra S 2018 Science 360 300 [43] Anmin N, Bu Y Q, Li P H, Zhang Y Z, Jin T Y, Liu J B, Zhang S, Wang Y B, He J L, Liu Z Y, Wang H T, Tian Y J and Yang W 2019 Nat. Commun. 10 5533 [44] Dang C, Chou J P, Dai B, Chou C T, Yang Y, Fan R, Lin W, Meng F, Hu A, Zhu J. Han J, Minor A M, Li J and Lu Y 2021 Science 371 76 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|