Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 127303    DOI: 10.1088/1674-1056/ad8a50
RAPID COMMUNICATION Prev   Next  

Higher-order topological corner states and origin in monolayer LaBrO

Qing Wang(王庆)1,2, and Ning Hao(郝宁)1,†
1 Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei 230031, China;
2 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
Abstract  Intrinsic higher-order topological insulators driven solely by orbital coupling are rare in electronic materials. Here, we propose that monolayer LaBrO is an intrinsic two-dimensional second-order topological insulator. The generalized second-order topological phase arises from the coupling between the 5d orbital of the La atom and the 2p orbital of the O atom. The underlying physics can be thoroughly described by a four-band generalized higher-order topological model. Notably, the edge states and corner states of monolayer LaBrO exhibit different characteristics in terms of morphology, number, and location distribution under different boundary and nanocluster configurations. Furthermore, the higher-order topological corner states of monolayer LaBrO are robust against variations in spin-orbit coupling and different values of Hubbard $U$. This provides a material platform for studying intrinsic 2D second-order topological insulators.
Keywords:  second order topological insulator      first-principles calculations      higher order topological model      zero-dimensional corner state  
Received:  29 September 2024      Revised:  22 October 2024      Accepted manuscript online:  23 October 2024
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
  73.20.At (Surface states, band structure, electron density of states)  
  02.40.-k (Geometry, differential geometry, and topology)  
Fund: This work was financially supported by the National Key R&D Program of China (Grant No. 2022YFA1403200), the National Natural Science Foundation of China (Grant Nos. 92265104, 12022413, and 11674331), the Basic Research Program of the Chinese Academy of Sciences Based on Major Scientific Infrastructures (Grant No. JZHKYPT-2021-08), the CASHIPS Director’s Fund (Grant No. BJPY2023A09), the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (Grant No. XDB33030100), Anhui Provincial Major S&T Project (Grant No. s202305a12020005), the Major Basic Program of Natural Science Foundation of Shandong Province (Grant No. ZR2021ZD01), and the High Magnetic Field Laboratory of Anhui Province (Grant No. AHHM-FX-2020-02).
Corresponding Authors:  Ning Hao     E-mail:  haon@hmfl.ac.cn

Cite this article: 

Qing Wang(王庆), and Ning Hao(郝宁) Higher-order topological corner states and origin in monolayer LaBrO 2024 Chin. Phys. B 33 127303

[1] Benalcazar W A, Bernevig B A and Hughes T L 2017 Science 357 61
[2] Benalcazar W A, Bernevig B A and Hughes T L 2017 Phys. Rev. B 96 245115
[3] Schindler F, Cook A M, Vergniory M G, Wang Z, Parkin S S P, Bernevig B A and Neupert T 2018 Sci. Adv. 4 eaat0346
[4] Song Z, Fang Z and Fang C 2017 Phys. Rev. Lett. 119 246402
[5] Geier M, Trifunovic L, Hoskam M and Brouwer P W 2018 Phys. Rev. B 97 205135
[6] Khalaf E 2018 Phys. Rev. B 97 205136
[7] van Miert G and Ortix C 2018 Phys. Rev. B 98 081110
[8] Cǎlugǎru D, Juričić V and Roy B 2019 Phys. Rev. B 99 041301
[9] Sheng X L, Chen C, Liu H, Chen Z, Yu Z M, Zhao Y X and Yang S A 2019 Phys. Rev. Lett. 123 256402
[10] Ren Y, Qiao Z and Niu Q 2020 Phys. Rev. Lett. 124 166804
[11] Liu B, Xian L, Mu H, Zhao G, Liu Z, Rubio A and Wang Z F 2021 Phys. Rev. Lett. 126 066401
[12] Liao M J, Wei M S, Wang S, Xu J and Yang Y 2024 Chin. Phys. B 33 060305
[13] Han B, Zeng J and Qiao Z 2022 Chin. Phys. Lett. 39 017302
[14] Shen Y F, Xu X F, Sun M, Zhou W J and Chang Y J 2024 Chin. Phys. B 33 044203
[15] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[16] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[17] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[18] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[19] Bansil A, Lin H and Das T 2016 Rev. Mod. Phys. 88 021004
[20] Chen C, Song Z, Zhao J Z, Chen Z, Yu Z M, Sheng X L and Yang S A 2020 Phys. Rev. Lett. 125 056402
[21] Li R, Mao N, Cai L, Bai Y, Huang B, Dai Y and Niu C 2023 Phys. Rev. B 108 125302
[22] Liu F and Wakabayashi K 2017 Phys. Rev. Lett. 118 076803
[23] Luo X J, Pan X H, Liu C X and Liu X 2023 Phys. Rev. B 107 045118
[24] Götz A, Hohenadler M and Assaad F F 2024 Phys. Rev. B 109 195154
[25] Ma C, Wang Q, Mills S, Chen X, Deng B, Yuan S, Li C, Watanabe K, Taniguchi T, Du X, et al. 2020 Nano Lett. 20 6076
[26] ParkMJ, Kim Y, Cho G Y and Lee S 2019 Phys. Rev. Lett. 123 216803
[27] Liu B, Zhao G, Liu Z and Wang Z F 2019 Nano Lett. 19 6492
[28] Liu Z, Ren Y, Han Y, Niu Q and Qiao Z 2022 Phys. Rev. B 106 195303
[29] Wang Q, Song R and Hao N 2023 Phys. Rev. B 107 235406
[30] Wang Q and Hao N 2024 arXiv:2407.00795
[31] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[32] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[33] Togo A and Tanaka I 2015 Scripta Materialia 108 1
[34] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[35] Mostofi A A, Yates J R, Pizzi G, Lee Y S, Souza I, Vanderbilt D and Marzari N 2014 Comput. Phys. Commun. 185 2309
[36] Sillen L 1941 Sven. Kem. Tidskr. 53 367
[37] Brixner L and Moore E 1983 Acta Cryst. 39 1316
[38] Limburg H J, Hölsä J, Porcher P, Herzog G, Starick D and Wulff H 1992 J. Solid State Chem. 98 404
[39] Haeuseler H and Jung M 1986 Mater. Res. Bull. 21 1291
[1] Stable structures and properties of Ru2Al5
Jing Luo(罗晶), Meiguang Zhang(张美光), Xiaofei Jia(贾晓菲), and Qun Wei(魏群). Chin. Phys. B, 2025, 34(1): 016301.
[2] Strain-tuned electronic and valley-related properties in Janus monolayers of SWSiX2 (X = N, P, As)
Yunxi Qi(戚云西), Jun Zhao(赵俊), and Hui Zeng(曾晖). Chin. Phys. B, 2024, 33(9): 096302.
[3] Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials
Qian Wang(王乾), Da-Wei Wu(邬大为), Guang-Hua Guo(郭光华), Meng-Qiu Long(龙孟秋), and Yun-Peng Wang(王云鹏). Chin. Phys. B, 2024, 33(9): 097507.
[4] Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC
Lei Fu(伏磊), Shasha Li(李沙沙), Xiangyan Bo(薄祥䶮), Sai Ma(马赛), Feng Li(李峰), and Yong Pu(普勇). Chin. Phys. B, 2024, 33(9): 096301.
[5] Electronic transport evolution across the successive structural transitions in Ni50-xFexTi50 shape memory alloys
Ping He(何萍), Jinying Yang(杨金颖), Qiusa Ren(任秋飒), Binbin Wang(王彬彬), Guangheng Wu(吴光恒), and Enke Liu(刘恩克). Chin. Phys. B, 2024, 33(7): 077201.
[6] Regulating the dopant clustering in LiZnAs-based diluted magnetic semiconductor
Zihang Jia(贾子航), Bo Zhou(周波), Zhenyi Jiang(姜振益), and Xiaodong Zhang(张小东). Chin. Phys. B, 2024, 33(5): 058101.
[7] Spin direction dependent quantum anomalous Hall effect in two-dimensional ferromagnetic materials
Yu-Xian Yang(杨宇贤) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(4): 047101.
[8] Optical properties of La2O3 and HfO2 for radiative cooling via multiscale simulations
Lihao Wang(王礼浩), Wanglin Yang(杨旺霖), Zhongyang Wang(王忠阳), Hongchao Li(李鸿超), Hao Gong(公昊), Jingyi Pan(潘静怡), Tongxiang Fan(范同祥), and Xiao Zhou(周啸). Chin. Phys. B, 2024, 33(12): 127801.
[9] A novel MgHe compound under high pressure
Jurong Zhang(张车荣), Lebin Chang(常乐斌), Suchen Ji(纪苏宸), Lanci Guo(郭兰慈), and Yuhao Fu(付钰豪). Chin. Phys. B, 2024, 33(11): 116202.
[10] Optical spectrum of ferrovalley materials: A case study of Janus H-VSSe
Chao-Bo Luo(罗朝波), Wen-Chao Liu(刘文超), and Xiang-Yang Peng(彭向阳). Chin. Phys. B, 2024, 33(1): 016303.
[11] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
[12] Quantum tunneling in the surface diffusion of single hydrogen atoms on Cu(001)
Xiaofan Yu(于小凡), Yangwu Tong(童洋武), and Yong Yang(杨勇). Chin. Phys. B, 2023, 32(8): 086801.
[13] Modulation of CO adsorption on 4,12,2-graphyne by Fe atom doping and applied electric field
Yu Dong(董煜), Zhi-Gang Shao(邵志刚), Cang-Long Wang(王苍龙), and Lei Yang(杨磊). Chin. Phys. B, 2023, 32(8): 087101.
[14] Structural, electronic, and Li-ion mobility properties of garnet-type Li7La3Zr2O12 surface: An insight from first-principles calculations
Jing-Xuan Wang(王靖轩), Bao-Zhen Sun(孙宝珍), Mei Li(李梅), Mu-Sheng Wu(吴木生), and Bo Xu(徐波). Chin. Phys. B, 2023, 32(6): 068201.
[15] Prediction of LiCrTe2 monolayer as a half-metallic ferromagnet with a high Curie temperature
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(5): 057505.
No Suggested Reading articles found!