| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Large grain size obtained by substrate directly heating for YBCO epitaxial films |
| Kebin Li(李珂彬), Yifei Zhang(张一飞), Tong Zhang(张同), Shuguang Yi(易曙光), Shi-Peng Zhang(张世鹏), Quan-Ming Gao(高全明), and Shan-Dong Li(李山东)† |
| Shandong Key Laboratory of Advanced Packaging, System Integration and Applications, College of Electronics and Information, Qingdao University, Qingdao 266071, China |
|
|
|
|
Abstract It is very important for high temperature superconducting electronic devices to increase the grain size of YBCO epitaxial films because it can effectively reduce the defects and improve the probability of successful preparation of Josephson junction. In this study, YBa$_{2}$Cu$_{3}$O$_{7-\delta }$ (YBCO) films with grain size in excess of 1.5 μm were successfully prepared by the directly heating SrTiO$_3$ substrates coated by SiC on their back. Interestingly, the grain size of YBCO film is enhanced greatly by this directly heating method, and the critical temperature $T_{\rm C}$ and critical current density $J_{\rm C}$ of YBCO films are as high as 91.5 K and 3.5 MA/cm$^{2}$, respectively. Compared with the traditional indirect heating method, which involves applying silver paste and then using a heat soaking block ($e.g.$ Inconel 600), this direct heating method effectively enhances the grain size of YBCO film and the possibility of successful preparation of Josephson junction.
|
Received: 28 February 2025
Revised: 22 April 2025
Accepted manuscript online: 07 May 2025
|
|
PACS:
|
74.25.-q
|
(Properties of superconductors)
|
| |
74.25.Sv
|
(Critical currents)
|
| |
74.78.-w
|
(Superconducting films and low-dimensional structures)
|
| |
81.15.Fg
|
(Pulsed laser ablation deposition)
|
|
| Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2023YFF0720500), the State Key Program of the National Natural Science Foundation of China (Grant No. U22A2019), and the National Key Project (Grant No. 22-05-CXZX-04-03-15). |
Corresponding Authors:
Shan-Dong Li
E-mail: dylsd007@163.com
|
Cite this article:
Kebin Li(李珂彬), Yifei Zhang(张一飞), Tong Zhang(张同), Shuguang Yi(易曙光), Shi-Peng Zhang(张世鹏), Quan-Ming Gao(高全明), and Shan-Dong Li(李山东) Large grain size obtained by substrate directly heating for YBCO epitaxial films 2025 Chin. Phys. B 34 097403
|
[1] Tolpygo S K, Bolkhovsky V, Weir T J, Wynn A, Oates D E, Johnson L M and Gouker M A 2016 IEEE Transactions on Applied Superconductivity 26 1 [2] Yang H C, Wu T Y, Horng H E, Wu C C, Yang S Y, Liao S H, Wu C H, Jeng J T, Chen J C, Chen K L and Chen M J 2006 Superconductor Science and Technology 19 S297 [3] Zhang X, Ying L, Niu M, Zhang H, Liu H, Wu Y, Xu W, Chen L, Shao Y, Liang T, Ma L, Jin H, Xie H, Gao Y, Sun H, Ren J, PengW, Maezawa M and Wang Z 2021 IEEE Transactions on Applied Superconductivity 31 1 [4] Schmelz M, Zakosarenko V, Chwala A, Schönau T, Stolz R, Anders S, Linzen S and Meyer H G 2016 IEEE Transactions on Applied Superconductivity 26 1 [5] Hato T, Tsukamoto A, Adachi S, Oshikubo Y, Watanabe H, Ishikawa H, Sugisaki M, Arai E and Tanabe K 2013 Superconductor Science and Technology 26 115003 [6] Song Z, Dai H, Rong L, Dong H, Wu J, Qiu L, Zhang G, Wang Y, Tao Q, Pei Y, Zhang S and Xie X 2019 IEEE Transactions on Applied Superconductivity 29 1 [7] Rong L, Bao S, Wu J, Zhang G, Qiu L, Zhang S, Wang Y, Dong H, Pei Y and Xie X 2019 IEEE Transactions on Applied Superconductivity 29 1 [8] Xue Z Y, Dong P, Yi Y M and Cao Z L 2007 Physica C 458 58 [9] Campbell D L, Shim Y P, Kannan B, Winik R, Kim D K, Melville A, Niedzielski B M, Yoder J L, Tahan C, Gustavsson S and Oliver W D 2020 Phys. Rev. X 10 041051 [10] Shirai S, Okubo Y, Matsuura K, Osada A, Nakamura Y and Noguchi A 2023 Phys. Rev. Lett. 130 260601 [11] Jaklevic R C, Lambe J, Silver A H and Mercereau J E 1964 Phys. Rev. Lett. 12 159 [12] Faley M I, Dammers J, Maslennikov Y V, Schneiderman J F, Winkler D, Koshelets V P, Shah N J and Dunin-Borkowski R E 2017 Superconductor Science and Technology 30 083001 [13] Xiong P Y, Chen F C, Feng Z P, Yang J T, Xia Y D, Yuan Y F, Wang X, Yuan J, Wu Y and Shi J 2023 Chin. Phys. B 32 077402 [14] Zhang Y F, Zhang S N, Liu J X, Yang F, Li C S, Li J F and Zhang P X 2024 Chin. Phys. Lett. 41 117402 [15] QueraltÓ A, Sieger M, Gupta K, Meledin A, Barusco P, Saltarelli L, de Palau M, Granados X, Obradors X and Puig T 2022 Superconductor Science and Technology 36 025003 [16] Mukaida M, Sato S, Takano Y, KusunokiMand Ohshima S 2002 Physica C 378-381 1232 [17] Cardwell D A 1998 Materials Science and Engineering: B 53 1 [18] Lee S G, Hong S H, Seong W K and Kang W N 2009 Superconductor Science and Technology 22 064009 [19] Zhang X, Miller D and Talvacchio J 1996 Journal of Materials Research 11 2440 [20] Lim J H, Jang S H, Joo J, Kim H, Lee H G, Hong G W and Kim C J 2006 Superconductor Science and Technology 19 306 [21] Aslan Ç ataltepe Ö, Güven Özdemir Z and Onbaşli Ü 2013 Physica C 491 59 [22] Snigirev O, Chukharkin M, Porokhov N, Rusanov S Y, Kashin V V, Tsvetkov V B, Kalabukhov A and Winkler D 2014 J. Phys.: Conf. Ser. 507 022033 [23] Nishioka T, Amemiya N, Jiang Z, Iijima Y, Saitoh T, Yamada M and Shiohara Y 2004 Physica C 412-414 992 [24] Lee J B, Lee S U, Kim S S, Kim B J, Kim H J, Yoo Y S, Kim J G, Hong G W and Lee H G 2009 Physica C 469 952 [25] Din F U, Shaari A H, Kien C S, Talib Z A, Din A U and Pah L K 2018 J. Phys.: Conf. Ser. 1082 012024 [26] Shipulin I A, Anna Thomas A, Holleis S, Eisterer M, Nielsch K and Hühne R 2022 Materials 15 5354 [27] Rasti M and Mohammadizadeh M R 2020 IEEE Transactions on Applied Superconductivity 30 1 [28] Shimizu Y, Takashima H, Yoshida Y and Furuse M 2018 IEEE Transactions on Applied Superconductivity 28 1 [29] Dai X H, Song J M, Zhao L, Wang Y L, Zhao H D and Liu B T 2020 Appl. Phys. A 126 895 [30] Arlina A, Halim S A, Kechik M M A and Chen S K 2015 J. Alloys Compd. 645 269 [31] Paturi P, Irjala M and Huhtinen H 2008 J. Appl. Phys. 103 123907 [32] Malisa A 2005 Annalen der Physik 517 533 [33] Gogova D, Tran D Q, Stanishev V, Jokubavicius V, Vines L, Schubert M, Yakimova R, Paskov P P and Darakchieva V 2024 J. Vac. Sci. Technol. A 42 022708 [34] Du J, Gnanarajan S and Bendavid A 2004 Physica C 400 143 [35] Ohshima S, Kusunoki M, Mukaida M, Suzuki T, Chibai K, Inadomaru M and Takano Y 2001 IEEE Transactions on Applied Superconductivity 11 3493 [36] Liu X, He Y, Li P, Li W, Wang Y and Zhou M 2024 Physica C 623 1354551 [37] Wu K H, Wang R C, Chen S P, Lin H C, Juang J Y, Uen T M and Gou Y S 1996 Appl. Phys. Lett. 69 421 [38] Miyazawa S, Sasaura M and Mukaida M 1993 Journal of Crystal Growth 128 704 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|