Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 077201    DOI: 10.1088/1674-1056/ad39d3
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic transport evolution across the successive structural transitions in Ni50-xFexTi50 shape memory alloys

Ping He(何萍)1,2, Jinying Yang(杨金颖)1,2, Qiusa Ren(任秋飒)1,3, Binbin Wang(王彬彬)1, Guangheng Wu(吴光恒)1, and Enke Liu(刘恩克)1,†
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 School of Materials Science and Engineering, University of Science and Technology of Beijing, Beijing 100083, China
Abstract  TiNi-based shape memory alloys have been extensively investigated due to their significant applications, but a comprehensive understanding of the evolution of electronic structure and electrical transport in a system with martensitic transformations (MT) is still lacking. In this work, we focused on the electronic transport behavior of three phases in Ni$_{50-x}$Fe$_{x}$Ti$_{50}$ across the MT. A phase diagram of Ni$_{50-x}$Fe$_{x}$Ti$_{50}$ was established based on x-ray diffraction, calorimetric, magnetic, and electrical measurements. To reveal the driving force of MT, phonon softening was revealed using first-principles calculations. Notably, the transverse and longitudinal transport behavior changed significantly across the phase transition, which can be attributed to the reconstruction of electronic structures. This work promotes the understanding of phase transitions and demonstrates the sensitivity of electron transport to phase transition.
Keywords:  martensitic transformation      electronic behavior      transport properties      first-principles calculations  
Received:  14 February 2024      Revised:  20 March 2024      Accepted manuscript online:  03 April 2024
PACS:  72.15.-v (Electronic conduction in metals and alloys)  
Fund: This work was supported by the State Key Development Program for Basic Research of China (Grant Nos. 2019YFA0704900 and 2022YFA1403800), the Fundamental Science Center of the National Natural Science Foundation of China (Grant No. 52088101), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (CAS) (Grant No. XDB33000000), the Synergetic Extreme Condition User Facility (SECUF), and the Scientific Instrument Developing Project of CAS (Grant No. ZDKYYQ20210003).
Corresponding Authors:  Enke Liu     E-mail:  ekliu@iphy.ac.cn

Cite this article: 

Ping He(何萍), Jinying Yang(杨金颖), Qiusa Ren(任秋飒), Binbin Wang(王彬彬), Guangheng Wu(吴光恒), and Enke Liu(刘恩克) Electronic transport evolution across the successive structural transitions in Ni50-xFexTi50 shape memory alloys 2024 Chin. Phys. B 33 077201

[1] Otsuka K and Kakeshita T 2002 MRS Bull. 27 91
[2] Shaw J A and Kyriakides S 1995 J. Mech. Phys. Solids 43 1243
[3] Lobo P S, Almeida J and Guerreiro L 2015 Proc. Eng. 114 776
[4] Yamauchi K, Ohkata I, Tsuchiya K and Miyazaki S 2011 Shape memory and superelastic alloys (Cambridge: Woodhead Publishing) pp. 163-168
[5] Huang W M, Ding Z, Wang C C, Wei J, Zhao Y and Purnawali H 2010 Mater Today 13 54
[6] Tegus O, Brück E, Buschow K H and de Boer F R 2002 Nature 415 150
[7] Giot M, Chapon L C, Androulakis J, Green M A, Radaelli P G and Lappas A 2007 Phys. Rev. Lett. 99 247211
[8] Yu M H, Lewis L H and Moodenbaugh A R 2003 J. Appl. Phys. 93 10128
[9] Sarkar S, Ren X and Otsuka K 2005 Phys. Rev. Lett. 95 205702
[10] Zhang J, Somsen C, Simon T, Ding X, Hou S, Ren S, Ren X, Eggeler G, Otsuka K and Sun J 2012 Acta Mater. 60 1999
[11] Hu L, Jiang S, Liu S, Zhang Y, Zhao Y and Zhao C 2016 Mater. Sci. Eng. A 660 1
[12] Schryvers D, Tirry W and Yang Z 2004 MRS Online Proceedings Library 842 156
[13] Allafi J K, Dlouhy A and Eggeler G 2002 Acta Mater. 50 4255
[14] Wu Z and Lawson J W 2022 Phys. Rev. B 106 L140102
[15] Haskins J B, Thompson A E and Lawson J W 2016 Phys. Rev. B 94 214110
[16] Haskins J B and Lawson J W 2017 J. Appl. Phys. 121 205103
[17] Satija S K, Shapiro S M, Salamon M B and Wayman S M 1984 Phys. Rev. B 29 6031
[18] Moine P, Allain J and Renker B 1984 J. Phys. F: Met. Phys. 14 2517
[19] Swain B, Mallick P, Bhuyan S K, Mohapatra S S, Mishra S C and Behera A 2020 J. Therm. Spray. Tech. 29 741
[20] Kaya M, Ç akmak Ö, Gülenç B and AtlıK C 2017 Mater. Res. Bull. 95 243
[21] Zhu J N, Zhu W, Borisov E, Yao X, Riemslag T, Goulas C, Popovich A, Yan Z, Tichelaar F D, Mainali D P, Hermans M and Popovich V 2023 J. Alloys Compd. 967 171740
[22] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[23] Kresse G and Furthmüller 1996 Phys. Rev. B 54 11169
[24] Togo A, Oba F and Tanaka L 2008 Phys. Rev. B 78 134106
[25] Lohan N M, Pricop B, Burlacu L and Bujoreanu L G 2018 J. Therm. Anal. Calorim. 131 215
[26] Liu J, Wang L, Niu M, Jiang R, Liu Y J, Xu D and Jin C G 2021 J. Magn. Magn. Mater. 527 167777
[27] Wang D, Zhang Z, Zhang J, Zhou Y, Wang Y, Ding X, Wang Y and Ren X 2010 Acta Mater. 58 6206
[28] Kopecký V, Rameš M, Veˇrtát P, Colman R H and Heczko O 2021 Metals 11 850
[29] Aguilar-Ortiz C O, Soto-Parra D, Alvarez-Alonso P, Lazpita P, Salazar D, Castillo-Villa P O, Flores-Zunig H and Chernenko V A 2016 Acta Mater. 107 9
[30] Lázpita P, Sasmaz M, Barandiarán J M and Chernenko V A 2018 Acta Mater. 155 95
[31] Agrawal A, Bakhtiari S, Mirzaeifar R, Jiang D, Yang H and Liu Y N 2024 J. Alloys Compd. 976 172969
[32] Parida J, Mishra S C, Satapathy D K, Marupalli B C G and Behera A 2023 J. Materi Eng. Perform.
[33] Nepal N K, Canfield P C and Wang L L 2024 Phys. Rev. B 109 054518
[34] Malcherek T and Fischer M 2018 Phys. Rev. Mater. 2 023602
[35] Jin Y M, Wang Y U and Ren Y 2015 npj Comput. Mater. 1 15002
[36] Zeng Q Q, Shen J L, Zhang H N, Chen J, Ding B, Xi X K, Liu E K, Wang W H and Wu G H 2019 J. Phys.: Condens. Matter 31 425401
[37] Lin T T, Dai X F, Zhao J X, Wang L Y, Wang X T, Cui Y T and Liu G D 2016 J. Alloys Compd. 684 143
[38] Algethami O A, Zhang Q Q, Tan J G, Wang X T, Liu Z H and Ma X G 2020 J. Magn. Magn. Mater. 498 166252
[39] He B B and Shang X K 2021 Philos Mag. Lett. 101 417
[40] Fukuda T, Maeda H, Yasui M and Kakeshita T 2008 Scripta Mater. 60 261
[41] Ouyang J, Tian Y, Xiao H and Zhang Y 2021 Mater. Chem. Phys. 273 125150
[42] Kudryavtsev Y V, Uvarov N V, Perekos A E, Dubowik J and Kozlova L E 2019 Intermetallics 109 85
[43] Malik S V, Dias E T, Babu P D and Priolkar K R 2023 J.Phys.: Condens. Matter 36 135701
[44] Kaletinaa Y V, Gerasimova E G, Terenteva P B and Kaletin A Y 2020 Phys. Metals Metallogr. 121 894
[45] Kasap S, Koughia C, Ruda H and Johanson R 2007 Springer Handbook of Electronic and Photonic Materials (Boston, MA: Springer) pp. 20- 23
[46] Kunzmann A, Frenzel J, Wolff U, Han J M, Giebeler L, Piorunek D, Mittendorff M, Scheiter J, Reith H, Perez N, Nielsch K, Eggeler G and Schierning G 2022 Mater. Today Phys. 24 100671
[1] Coevolution of superconductivity and Hall coefficient with anisotropic lattice shrinkage in compressed KCa2Fe4As4F2
Jinyu Han(韩金宇), Wenshan Hong(洪文山), Shu Cai(蔡树), Jinyu Zhao(赵金瑜), Jing Guo(郭静), Yazhou Zhou(周亚洲), Pengyu Wang(王鹏玉), Lixin Cao(曹立新), Huiqian Luo(罗会仟), Shiliang Li(李世亮), Qi Wu(吴奇), and Liling Sun(孙力玲). Chin. Phys. B, 2024, 33(7): 077402.
[2] Magnetic and electrical transport properties in GdAlSi and SmAlGe
Jing Gong(巩静), Huan Wang(王欢), Xiao-Ping Ma(马小平), Xiang-Yu Zeng(曾祥雨), Jun-Fa Lin(林浚发), Kun Han(韩坤), Yi-Ting Wang(王乙婷), and Tian-Long Xia(夏天龙). Chin. Phys. B, 2024, 33(7): 077302.
[3] Regulating the dopant clustering in LiZnAs-based diluted magnetic semiconductor
Zihang Jia(贾子航), Bo Zhou(周波), Zhenyi Jiang(姜振益), and Xiaodong Zhang(张小东). Chin. Phys. B, 2024, 33(5): 058101.
[4] Pre-existing orthorhombic embryos-induced hexagonal—orthorhombic martensitic transformation in MnNiSi1-x(CoNiGe)x alloy
Ting-Ting Zhang(张婷婷), Yuan-Yuan Gong(龚元元), Zi-Qian Lu(鲁子骞), and Feng Xu(徐锋). Chin. Phys. B, 2024, 33(4): 048103.
[5] Spin direction dependent quantum anomalous Hall effect in two-dimensional ferromagnetic materials
Yu-Xian Yang(杨宇贤) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(4): 047101.
[6] Optical spectrum of ferrovalley materials: A case study of Janus H-VSSe
Chao-Bo Luo(罗朝波), Wen-Chao Liu(刘文超), and Xiang-Yang Peng(彭向阳). Chin. Phys. B, 2024, 33(1): 016303.
[7] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
[8] Quantum tunneling in the surface diffusion of single hydrogen atoms on Cu(001)
Xiaofan Yu(于小凡), Yangwu Tong(童洋武), and Yong Yang(杨勇). Chin. Phys. B, 2023, 32(8): 086801.
[9] Modulation of CO adsorption on 4,12,2-graphyne by Fe atom doping and applied electric field
Yu Dong(董煜), Zhi-Gang Shao(邵志刚), Cang-Long Wang(王苍龙), and Lei Yang(杨磊). Chin. Phys. B, 2023, 32(8): 087101.
[10] Structural and mass transport properties of liquid ytterbium in the temperature range 1123 K-1473 K
D D Satikunvar, N K Bhatt, and B Y Thakore. Chin. Phys. B, 2023, 32(6): 067101.
[11] Structural, electronic, and Li-ion mobility properties of garnet-type Li7La3Zr2O12 surface: An insight from first-principles calculations
Jing-Xuan Wang(王靖轩), Bao-Zhen Sun(孙宝珍), Mei Li(李梅), Mu-Sheng Wu(吴木生), and Bo Xu(徐波). Chin. Phys. B, 2023, 32(6): 068201.
[12] Prediction of LiCrTe2 monolayer as a half-metallic ferromagnet with a high Curie temperature
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(5): 057505.
[13] Evaluating thermal expansion in fluorides and oxides: Machine learning predictions with connectivity descriptors
Yilin Zhang(张轶霖), Huimin Mu(穆慧敏), Yuxin Cai(蔡雨欣), Xiaoyu Wang(王啸宇), Kun Zhou(周琨), Fuyu Tian(田伏钰), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2023, 32(5): 056302.
[14] Room temperature quantum anomalous Hall insulator in honeycomb lattice, RuCS3, with large magnetic anisotropy energy
Yong-Chun Zhao(赵永春), Ming-Xin Zhu(朱铭鑫), Sheng-Shi Li(李胜世), and Ping Li(李萍). Chin. Phys. B, 2023, 32(5): 057301.
[15] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[1] HUANG MAO (黄矛), LIU KE-LING (刘克玲). NON-BOLTZMANN ENERGY LEVEL DISTRIBUTIONS OF ARGON ATOMS IN THE INDUCTIVELY COUPLED ARGON PLASMA[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 11 -18 .
[2] ZHOU HAI-JUN (周海军), XU XIANG-YUAN (许祥源), HUANG WEN (黄雯), LI LIANG-QUAN (李良权), CHEN DIE-YAN (陈瓞延). STUDY OF HIGH-LYING EXCITED STATES OF RARE-EARTH ELEMENT Dy BY LASER RESONANCE IONIZATION SPECTROSCOPY[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 19 -26 .
[3] ZHAN LI (詹黎), TU JIN-HONG (屠锦洪), GUO JIA-RONG (郭嘉荣). ANALYSIS OF THE GENERAL EFFECTS IN DOUBLE-GRATING DIFFRACTION-INTERFERENCE SYSTEM[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 27 -44 .
[4] DING E-JIANG(丁鄂江), Lü YAN-NAN(吕燕南). THE INHOMOGENEOUS PERIODIC STATES IN A COUPLED MAP LATTICE[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 3 -10 .
[5] FAN WEI-JUN (范卫军), XIA JIAN-BAI (顾宗权), GU ZONG-QUAN (夏建白), LI GUO-HUA (李国华). FIRST-PRINCIPLE SELF-CONSISTENT PSEUDOPOTENTIAL CALCULATION OF THE ELECTRONIC STRUCTURES OF SHORT-PERIOD (GaAs)m(AlAs)n SUPERLATT1CES[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 45 -50 .
[6] YE HONG-JUAN (叶红娟), HU CAN-MING (胡灿明), HUANG YE-XIAO (黄叶肖), LU XIAO-FENG (陆晓峰), WANG ZHI-TAO (王志涛), ZENG WEN-SHENG (曾文生), ZHANG GUANG-YIN (张光寅), YAN SHAO-LIN (阎少林). FAR-INFRARED AND INFRARED REFLECTIONS OF Tl2Ba2Ca2Cu3O10 FILM[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 51 -56 .
[7] LIN WEI-ZHU (林位株), PENG WEN-JI (彭文基), QIU ZHI-REN (丘志仁), ZHOU XUE-CONG (周学聪), MO DANG (莫党). DYNAMICS OF CARRIER CAPTURE IN AlGaAs/GaAs MULTIPLE QUANTUM WELLS[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 63 -68 .
[8] FAN HONG-CHANG (范宏昌), ZHANG YI-TONG (张贻瞳), JIN XIN (金新), TONG HONG-WU (童红武), YAO XI-XIAN (姚希贤). THERMALLY ACTIVATED FLUX MOTION IN HIGH-Tc SUPERCONDUCTORS[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(2): 123 -129 .
[9] JIN YING (金鹰), ZHANG SHU-LIN (张树霖), QIN GUO-GANG (秦国刚), FAN YONG-LIANG (樊永良), ZHOU GOU-LIANG (周国良), YU MING-REN (俞鸣人). RAMAN SCATTERING INTENSITIES OF FOLDED LONGITUDINAL ACOUSTIC PHONONS IN GexSi1-x/Si SUPERLATTICES[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(2): 130 -137 .
[10] WANG JIAN (王坚), WU XING-FANG (吴杏芳), FANG ZHENG-ZHI (方正知). DIFFUSIVE AGGREGATION ON ION IMPLANTED THIN FILMS[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(2): 81 -85 .