CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC |
Lei Fu(伏磊)†, Shasha Li(李沙沙)†,‡, Xiangyan Bo(薄祥䶮), Sai Ma(马赛), Feng Li(李峰)§, and Yong Pu(普勇)¶ |
School of Science & New Energy Technology Engineering Laboratory of Jiangsu Provence, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China |
|
|
Abstract The two-dimensional (2D) Janus monolayers are promising in spintronic device application due to their enhanced magnetic couplings and Curie temperatures. Van der Waals CrCl$_{3}$ monolayer has been experimentally proved to have an in-plane magnetic easy axis and a low Curie temperature of 17 K, which will limit its application in spintronic devices. In this work, we propose a new Janus monolayer Cr$_{2}$Cl$_{3}$S$_{3}$ based on the first principles calculations. The phonon dispersion and elastic constants confirm that Janus monolayer Cr$_{2}$Cl$_{3}$S$_{3}$ is dynamically and mechanically stable. Our Monte Carlo simulation results based on magnetic exchange constants reveal that Janus monolayer Cr$_{2}$Cl$_{3}$S$_{3}$ is an intrinsic ferromagnetic semiconductor with $T_{\rm C}$ of 180 K, which is much higher than that of CrCl$_{3}$ due to the enhanced ferromagnetic coupling caused by S substitution. Moreover, the magnetic easy axis of Janus Cr$_{2}$Cl$_{3}$S$_{3}$ can be tuned to the perpendicular direction with a large magnetic anisotropy energy (MAE) of 142 μeV/Cr. Furthermore, the effect of biaxial strain on the magnetic property of Janus monolayer Cr$_{2}$Cl$_{3}$S$_{3}$ is evaluated. It is found that the Curie temperature is more robust under tensile strain. This work indicates that the Janus monolayer Cr$_{2}$Cl$_{3}$S$_{3}$ presents increased Curie temperature and out-of-plane magnetic easy axis, suggesting greater application potential in 2D spintronic devices.
|
Received: 08 April 2024
Revised: 05 June 2024
Accepted manuscript online: 07 June 2024
|
PACS:
|
63.20.dk
|
(First-principles theory)
|
|
75.70.Ak
|
(Magnetic properties of monolayers and thin films)
|
|
75.50.Pp
|
(Magnetic semiconductors)
|
|
61.82.Fk
|
(Semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12104234), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20210578, 20KJB140004, and JSSCBS20210513). Y Pu acknowledges the National Natural Science Foundation of China (Grant Nos. 61874060, U1932159, and 61911530220), Jiangsu Specially-Appointed Professor Program, the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20181388 and 19KJA180007), and the Overseas Researcher Innovation Program of Nanjing, NUPTSF (Grant No. NY217118). F Li Acknowledges the Natural Science Fund for Colleges and Universities in Jiangsu Province, China (Grant No. 21KJD140005) and the National Natural Science Foundation of China (Grant No. 12304085). |
Corresponding Authors:
Shasha Li, Feng Li, Yong Pu
E-mail: shashali@njupt.edu.cn;lifeng@njupt.edu.cn;puyong@njupt.edu.cn
|
Cite this article:
Lei Fu(伏磊), Shasha Li(李沙沙), Xiangyan Bo(薄祥䶮), Sai Ma(马赛), Feng Li(李峰), and Yong Pu(普勇) Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC 2024 Chin. Phys. B 33 096301
|
[1] Lin X Y, Yang W, Wang K L and Zhao W S 2019 Nat. Electron. 2 274 [2] Chen J and Dong S 2021 Phys. Rev. Lett. 126 117603 [3] Liu Y and Wang Q 2020 Adv. Sci. 7 1902468 [4] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z and Wang Y 2017 Nature 546 265 [5] McGuire M A, Clark G, Ks S, Chance W M, Jellison G E, Cooper V R, Xu X D and Sales B C 2017 Phys. Rev. Mater. 1 014001 [6] Huang B W, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A and Cobden D H 2017 Nature 546 270 [7] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W and Zhu J Y 2018 Nature 563 94 [8] Zhang W B, Qu Q, Zhu P and Lam C H 2015 J. Mate. Chem. C 3 12457 [9] Chen S B, Huang C X, Sun H S, Ding J F, Jena P and Kan E J 2019 J. Phys. Chem. C 123 17987 [10] Li H X, Xu Y K, Lai K and Zhang W B 2019 Phys. Chem. Chem. Phys. 21 11949 [11] Huang C X, Guan J T, Li Q Y, Wu F, Jena P and Kan E J 2021 Phys. Rev. B 103 L140410 [12] Avsar A, Ciarrocchi A, Pizzochero M, Unuchek D, Yazyev O V and Kis A 2019 Nat. Nanotechnol. 14 674 [13] Jiao J Y, Miao N H, Li Z, Gan Y, Zhou J and Sun Z M 2019 J. Phys. Chem. Lett. 10 3922 [14] Ng S W, Noor N and Zheng Z 2018 NPG Asia Mater. 10 217 [15] Zhang C M, Nie Y H, Sanvito S and Du A J 2019 Nano Lett. 19 1366 [16] Hu Y, Gong Y, Zeng H, Wang J and Fan X L 2020 Phys. Chem. Chem. Phys. 22 24506 [17] Li C Q and An Y K 2023 Nanoscale 15 8304 [18] Hai X C, Jun Z, Wei J, Yan N Z and Yuan P F 2021 Phys. Rev. B 12 125121 [19] Wu D X, Zhuo Z W, Lv H F and Wu X J 2021 J Phys. Chem. Lett. 12 2905 [20] Xue F, Hou Y S, Wang Z and Wu R Q 2019 Phys. Rev. B 100 224429 [21] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15 [22] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [23] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [24] Blöchl P E 1994 Phys. Rev. B 50 17953 [25] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [26] Rohrbach A, Hafner J and Kresse G 2003 J. Phys.: Condens. Matter. 15 979 [27] Huang C X, Du Y P, Wu H P, Xiang H J, Deng K M and Kan E J 2018 Phys. Rev. Lett. 120 147601 [28] Webster L and Yan J A 2018 Phys. Rev. B 98 144411 [29] Grimme S F, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 15 [30] Togo A and Tanaka I 2015 Scripta Materialia 108 1 [31] Blaha P, Schwarz K, Madsen G, Kvasnicka D and Luitz J 2001 WIEN2k, An Augmented Plane Wave+ Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, TU Wien, Austria). [32] Liechtenstein A I, Katsnelson M I, Antropov V P and Gubanov V A 1987 J. Magn. Magn. Mater. 9 767 [33] Wan X G, Yin Q and Savrasov S Y 2006 Phys. Rev. Lett. 97 266403 [34] Wang D, Bo X Y, Tang F and Wan X G 2023 Phys. Rev. B 108 085140 [35] Bo X Y, Fu L, Wan X G, Li S S and Pu Y 2024 Phys. Rev. B 109 014405 [36] Bo X Y, Wang D, Wan B and Wan X G 2020 Phys. Rev. B 101 024416 [37] Bo X, Wang D and Wan X G 2021 Phys. Lett. A 394 127202 [38] Wang D, Bo X Y, Tang F and Wan X G 2019 Phys. Rev. B 99 035160 [39] Zhang Y H, Wang B, Guo Y L, Li Q and Wang J L 2021 Comp. Mater. Sci. 197 110638 [40] Zhang F, Mi W B and Wang X C 2019 Adv. Electron. Mater. 6 1900778 [41] Wang Y, Qiao M, Li Y F and Chen Z F 2018 Nanos. Horizon. 3 327 [42] Chen W, Zhang J M, Nie Y Z, Xia Q L and Guo G H 2020 J. Magn. Magn. Mater. 508 166878 [43] Zhang Y H, Wang B, Guo Y L, Li Q and Wang J L 2021 Comp. Mater. Sci. 197 110638 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|