Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 127801    DOI: 10.1088/1674-1056/ad84c0
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Optical properties of La2O3 and HfO2 for radiative cooling via multiscale simulations

Lihao Wang(王礼浩)1, Wanglin Yang(杨旺霖)1, Zhongyang Wang(王忠阳)1,†, Hongchao Li(李鸿超)1, Hao Gong(公昊)1, Jingyi Pan(潘静怡)1, Tongxiang Fan(范同祥)1,‡, and Xiao Zhou(周啸)1,2,§
1 State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
2 Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  Radiative cooling materials have gained prominence as a zero-energy solution for mitigating global warming. However, a comprehensive understanding of the atomic-scale optical properties and macroscopic optical performance of radiative cooling materials remains elusive, limiting insight into the underlying physics of their optical response and cooling efficacy. La$_{2}$O$_{3}$ and HfO$_{2}$, which represent rare earth and third/fourth subgroup inorganic oxides, respectively, show promise for radiative cooling applications. In this study, we used multiscale simulations to investigate the optical properties of La$_{2}$O$_{3}$ and HfO$_{2}$ across a broad spectrum. First-principles calculations revealed their dielectric functions and intrinsic refractive indices, and the results indicated that the slightly smaller bandgap of La$_{2}$O$_{3}$ compared to HfO$_{2}$ induces a higher refractive index in the solar band. Additionally, three-phonon scattering was found to provide more accurate infrared optical properties than two-phonon scattering, which enhanced the emissivity in the sky window. Monte Carlo simulations were also used to determine the macroscopic optical properties of La$_{2}$O$_{3}$ and HfO$_{2}$ coatings. Based on the simulated results, we identified that the particle size and particle volume fraction play a dominant role in the optical properties. Our findings underscore the potential of La$_{2}$O$_{3}$ and HfO$_{2}$ nanocomposites for environment-friendly cooling and offer a new approach for high-throughput screening of optical materials through multiscale simulations.
Keywords:  radiative cooling      optical properties of La$_{2}$O$_{3}$ and HfO$_{2}$      first-principles calculations      Monte Carlo simulations  
Received:  04 June 2024      Revised:  28 August 2024      Accepted manuscript online:  09 October 2024
PACS:  78.20.-e (Optical properties of bulk materials and thin films)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  02.70.Uu (Applications of Monte Carlo methods)  
Fund: The authors gratefully acknowledge the National Natural Science Foundation of China (Grant Nos. U23A20565, 52301194, and 52101178), the Shanghai Science and Technology Commission (Grant No. 22511100400), the startup funding from Shanghai Jiao Tong University (Grant No. WH220405009), and Innovation Program of Shanghai Municipal Education Commission (Grant No. 2023ZKZD15) for providing funding support for this research.
Corresponding Authors:  Zhongyang Wang, Tongxiang Fan, Xiao Zhou     E-mail:  zy_wang@sjtu.edu.cn;txfan@sjtu.edu.cn;zhouxiao113@sjtu.edu.cn

Cite this article: 

Lihao Wang(王礼浩), Wanglin Yang(杨旺霖), Zhongyang Wang(王忠阳), Hongchao Li(李鸿超), Hao Gong(公昊), Jingyi Pan(潘静怡), Tongxiang Fan(范同祥), and Xiao Zhou(周啸) Optical properties of La2O3 and HfO2 for radiative cooling via multiscale simulations 2024 Chin. Phys. B 33 127801

[1] Mitchell J F B, Johns T C, Gregory J M and Tett S F B 1995 Nature 376 501
[2] Goldstein E A, Raman A P and Fan S 2017 Nat. Energy 2 1
[3] Raman A P, Anoma M A, Zhu L, Rephaeli E and Fan S 2014 Nature 515 540
[4] Yin X, Yang R, Tan G and Fan S 2020 Science 370 786
[5] Kósny J and Yarbrough D W 2022 Thermal Insulation and Radiation Control Technologies for Buildings (Cham: Springer International Publishing) pp. 1-35
[6] Yu X, Chan J and Chen C 2021 Nano Energy 88 106259
[7] Zhao B, Hu M, Ao X, Xuan Q and Pei G 2020 Appl. Energy 262 114548
[8] Wu M, Shao Z, Zhao N, Zhang R, Yuan G, Tian L, Zhang Z, Gao W and Bai H 2023 Science 382 1379
[9] Oropeza-Perez I and Østergaard P A 2018 Renew. Sustain. Energy Rev. 82 531
[10] Joannopoulos J D, Villeneuve P R and Fan S 1997 Nature 386 143
[11] Lin K T, Han J, Li K, Guo C, Lin H and Jia B 2021 Nano Energy 80 105517
[12] Zou C, Ren G, Hossain M M, Nirantar S, Withayachumnankul W, Ahmed T, Bhaskaran M, Sriram S, Gu M and Fumeaux C 2017 Adv. Opt. Mater. 5 1700460
[13] Zhu B, Li W, Zhang Q, Li D, Liu X, Wang Y, Xu N, Wu Z, Li J, Li X, Catrysse P B, Xu W, Fan S and Zhu J 2021 Nat. Nanotechnol. 16 1342
[14] Wang T, Wu Y, Shi L, Hu X, Chen M and Wu L 2021 Nat. Commun. 12 365
[15] Chae D, Son S, Lim H, Jung P H, Ha J and Lee H 2021 Mater. Today Phys. 18 100389
[16] Zhu L, Tian L, Jiang S, Han L, Liang Y, Li Q and Chen S 2023 Chem. Soc. Rev. 52 7389
[17] Kim N K, Dutta S and Bhattacharyya D 2018 Compos. Sci. Technol. 162 64
[18] Li X, Peoples J, Huang Z, Zhao Z, Qiu J and Ruan X 2020 Cell Rep. Phys. Sci. 1 100221
[19] Xie Y, Wang L, Liu B, Zhu L, Shi S and Wang X 2018 Mater. Des. 160 918
[20] Chen G, Wang Y, Qiu J, Cao J, Zou Y, Wang S, Jia D and Zhou Y 2020 ACS Appl. Mater. Interfaces 12 54963
[21] Zheng J, Li Z, Zheng Y, Zhao W, Tan F, Yang F, Chen H and Xue L 2023 Ceram. Int. 49 558
[22] Gao W and Chen Y 2023 Small 19 220614
[23] Yang C, Fan H, Qiu S, Xi Y and Fu Y 2009 J. Non-Cryst. Solids 355 33
[24] Al-Kuhaili M F 2004 Opt. Mater. 27 383
[25] Zhao D, Chen Z and Liao X 2022 Microstructures 2 2022007
[26] Banerjee W, Kashir A and Kamba S 2022 Small 18 2107575
[27] Bilel C, Jbeli R, Ben Jemaa I, Dabaki Y, Alzaid M, Saadallah F, Bouaicha M and Amlouk M 2021 J. Mater. Sci., Mater. Electron. 32 5415
[28] Lim S G, Kriventsov S, Jackson T N, Haeni J H, Schlom D G, Balbashov A M, Uecker R, Reiche P, Freeouf J L and Lucovsky G 2002 J. Appl. Phys. 91 4500
[29] Vali R and Hosseini S M 2004 Comput. Mater. Sci. 31 125
[30] Atuchin V V, Kalinkin A V, Kochubey V A, Kruchinin V N, Vemuri R S and Ramana C V 2011 J. Vac. Sci. Technol. A 29 021004
[31] Tong Z, Peoples J, Li X, Yang X, Bao H and Ruan X 2022 Mater. Today Phys. 24 100658
[32] Peoples J, Li X, Lv Y, Qiu J, Huang Z and Ruan X 2019 Int. J. Heat Mass Transfer 131 487
[33] Blase X, Duchemin I, Jacquemin D and Loos P F 2020 J. Phys. Chem. Lett. 11 7371
[34] Paul A M D and Niels H D B 1927 Proc. R. Soc. Lond. A 114 243
[35] Polavarapu P L 2005 J. Phys. Chem. A 109 7013
[36] Polavarapu P L 2005 J. Phys. Chem. A 109 7013
[37] Hafner J 2008 J. Comput. Chem. 29 2044
[38] Endot E, Sim P and Ismail S 2022 Phys. Rev. B 59 7413
[39] Hammer B, Hansen L B, Nørskov J K, Heyd J and Scuseria G E 2004 J. Chem. Phys. 121 1187
[40] Han Z, Yang X, Li W, Feng T and Ruan X 2022 Comput. Phys. Commun. 270 108179
[41] Li W, Carrete J, A. Katcho N and Mingo N 2014 Comput. Phys. Commun. 185 1747
[42] Redmond S, Rand S C, Ruan X L and Kaviany M 2004 J. Appl. Phys. 95 4069
[43] Adachi G and Imanaka N 1998 Chem. Rev. 98 1479
[44] Mehrotra P N, Chandrashekar G V, Rao C N R and Subbarao E C 1966 Trans. Faraday Soc. 62 3586
[45] Kawamoto A, Jameson J, Griffin P, Kyeongjae Cho and Dutton R 2001 IEEE Electron Device Lett. 22 14
[46] Jiang T T, Sun Q Q, Li Y, Guo J J, Zhou P, Ding S J and Zhang D W 2011 J. Phys. Appl. Phys. 44 185402
[47] Zhao X and Vanderbilt D 2002 Phys. Rev. B 65 233106
[48] Damien C 2020 V Sim
[49] Scarel G, Debernardi A, Tsoutsou D, Spiga S, Capelli S C, Lamagna L, Volkos S N, Alia M and Fanciulli M 2007 Appl. Phys. Lett. 91 102901
[50] Zhao X and Vanderbilt D 2002 Phys. Rev. B 65 075105
[51] Feinberg A and Perry C H 1981 J. Phys. Chem. Solids 42 513
[52] Bright T J, Watjen J I, Zhang Z M, Muratore C and Voevodin A A 2012 Thin Solid Films 520 6793
[53] Paulick T C 1986 Appl. Opt. 25 562
[54] Armelao L, Pascolini M, Bottaro G, Bruno G, Giangregorio M M, Losurdo M, Malandrino G, Lo Nigro R, Fragalà M E and Tondello E 2009 Phys. Chem. C 113 2911
[55] Smith D and Baumeister P 1979 Appl. Opt. 18 111
[56] Medford R D, Powell A L T and Fletcher W H W 1962 Nature 196 32
[57] Adachi S 1999 Optical Properties of Crystalline and Amorphous Semiconductors: Materials and Fundamental Principles (Boston, MA: Springer US) pp. 33-62
[58] Ribbing C G and Wäckelgård E 1991 Thin Solid Films 206 312
[1] Strain-tuned electronic and valley-related properties in Janus monolayers of SWSiX2 (X = N, P, As)
Yunxi Qi(戚云西), Jun Zhao(赵俊), and Hui Zeng(曾晖). Chin. Phys. B, 2024, 33(9): 096302.
[2] Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials
Qian Wang(王乾), Da-Wei Wu(邬大为), Guang-Hua Guo(郭光华), Meng-Qiu Long(龙孟秋), and Yun-Peng Wang(王云鹏). Chin. Phys. B, 2024, 33(9): 097507.
[3] Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC
Lei Fu(伏磊), Shasha Li(李沙沙), Xiangyan Bo(薄祥䶮), Sai Ma(马赛), Feng Li(李峰), and Yong Pu(普勇). Chin. Phys. B, 2024, 33(9): 096301.
[4] Electronic transport evolution across the successive structural transitions in Ni50-xFexTi50 shape memory alloys
Ping He(何萍), Jinying Yang(杨金颖), Qiusa Ren(任秋飒), Binbin Wang(王彬彬), Guangheng Wu(吴光恒), and Enke Liu(刘恩克). Chin. Phys. B, 2024, 33(7): 077201.
[5] Regulating the dopant clustering in LiZnAs-based diluted magnetic semiconductor
Zihang Jia(贾子航), Bo Zhou(周波), Zhenyi Jiang(姜振益), and Xiaodong Zhang(张小东). Chin. Phys. B, 2024, 33(5): 058101.
[6] Spin direction dependent quantum anomalous Hall effect in two-dimensional ferromagnetic materials
Yu-Xian Yang(杨宇贤) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(4): 047101.
[7] A novel MgHe compound under high pressure
Jurong Zhang(张车荣), Lebin Chang(常乐斌), Suchen Ji(纪苏宸), Lancing Guo(郭兰慈), and Yuhao Fu(付钰豪). Chin. Phys. B, 2024, 33(11): 116202.
[8] Optical spectrum of ferrovalley materials: A case study of Janus H-VSSe
Chao-Bo Luo(罗朝波), Wen-Chao Liu(刘文超), and Xiang-Yang Peng(彭向阳). Chin. Phys. B, 2024, 33(1): 016303.
[9] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
[10] Modulation of CO adsorption on 4,12,2-graphyne by Fe atom doping and applied electric field
Yu Dong(董煜), Zhi-Gang Shao(邵志刚), Cang-Long Wang(王苍龙), and Lei Yang(杨磊). Chin. Phys. B, 2023, 32(8): 087101.
[11] Quantum tunneling in the surface diffusion of single hydrogen atoms on Cu(001)
Xiaofan Yu(于小凡), Yangwu Tong(童洋武), and Yong Yang(杨勇). Chin. Phys. B, 2023, 32(8): 086801.
[12] Structural, electronic, and Li-ion mobility properties of garnet-type Li7La3Zr2O12 surface: An insight from first-principles calculations
Jing-Xuan Wang(王靖轩), Bao-Zhen Sun(孙宝珍), Mei Li(李梅), Mu-Sheng Wu(吴木生), and Bo Xu(徐波). Chin. Phys. B, 2023, 32(6): 068201.
[13] Prediction of LiCrTe2 monolayer as a half-metallic ferromagnet with a high Curie temperature
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(5): 057505.
[14] Designing radiative cooling metamaterials for passive thermal management by particle swarm optimization
Shenshen Yan(闫申申), Yan Liu(刘岩), Zi Wang(王子), Xiaohua Lan(兰晓华), Yi Wang(汪毅), and Jie Ren(任捷). Chin. Phys. B, 2023, 32(5): 057802.
[15] Evaluating thermal expansion in fluorides and oxides: Machine learning predictions with connectivity descriptors
Yilin Zhang(张轶霖), Huimin Mu(穆慧敏), Yuxin Cai(蔡雨欣), Xiaoyu Wang(王啸宇), Kun Zhou(周琨), Fuyu Tian(田伏钰), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2023, 32(5): 056302.
No Suggested Reading articles found!