|
|
|
Effects of noise on synchronization in simplicial complexes |
| Linying Xiang(项林英)1,†, Shuwei Yao(姚姝玮)1, Yining Chen(陈艺宁)1, Ruitong Yan(闫锐桐)1, and Ruya Xia(夏儒雅)2 |
1 School of Artificial Intelligence, Tiangong University, Tianjin 300387, China; 2 School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China |
|
|
|
|
Abstract This paper explores the synchronization of stochastic simplicial complexes with noise, modeled by stochastic differential equations of Itô type. It establishes the relationship between synchronization and individual dynamics, higher-order structures, coupling strengths, and noise. In particular, this study delves into the role of multi-body interactions, particularly focusing on the influence of higher-order simplicial structures on the overall synchronization behavior. Furthermore, the effects of noise on synchronizability in the stochastic simplicial complex are thoroughly examined. The obtained results indicate that the effects of noise on the synchronizability vary with the manner in which noise propagates. The presence of noise can regulate the synchronization pattern of the simplicial complex, transforming the unstable state into a stable state, and vice versa. These findings offer valuable insights and a theoretical foundation for improving the performance of real-world networks, such as communication networks, biological systems, and social networks, where noise is often inevitable.
|
Received: 14 January 2025
Revised: 19 March 2025
Accepted manuscript online: 02 April 2025
|
|
PACS:
|
05.45.Xt
|
(Synchronization; coupled oscillators)
|
| |
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
| Fund: Project supported in part by the National Natural Science Foundation of China (Grant Nos. 62473284, 61973064, and 62203327) and Hebei Natural Science Foundation (Grant No. F2022501024). |
Corresponding Authors:
Linying Xiang
E-mail: xianglinying@tiangong.edu.cn
|
Cite this article:
Linying Xiang(项林英), Shuwei Yao(姚姝玮), Yining Chen(陈艺宁), Ruitong Yan(闫锐桐), and Ruya Xia(夏儒雅) Effects of noise on synchronization in simplicial complexes 2025 Chin. Phys. B 34 070503
|
[1] Gao T T, Barzel B and Yan G 2024 Nat. Commun. 15 6029 [2] He M, Chen J, GongMand Shao Z 2024 IEEE Transactions on Emerging Topics in Computing 12 126 [3] Zheng Q Q, Li X, Shen J W, Pandey V and Guan L N 2024 J. Phys. A: Math. Theor. 57 395203 [4] Boccaletti S, Kurths J, Osipov G, Valladares D and Zhou C 2002 Phys. Rep. 366 1 [5] Pecora L M and Carroll T L 1998 Phys. Rev. Lett. 80 2109 [6] Shi X, Wang Q and Lu Q 2008 Cognitive Neurodynamics 2 195 [7] Han F, Lu Q, Wiercigroch M and Ji Q 2009 Chin. Phys. B 18 482 [8] Del Genio C I, Gómez-Gardeñes J, Bonamassa I and Boccaletti S 2016 Sci. Adv. 2 e1601679 [9] Ding L, Yu P, Liu Z W, Guan Z H and Feng G 2013 Automatica 49 2881 [10] Chen F and Chen J 2020 IEEE Transactions on Automatic Control 65 1144 [11] Preciado V M and Rahimian M A 2017 IEEE Transactions on Network Science and Engineering 4 215 [12] Buscarino A, Gambuzza L V, Porfiri M, Fortuna L and Frasca M 2013 Sci. Rep. 3 2026 [13] Wang J, Feng J, Lou Y and Chen G 2021 IEEE Transactions on Automatic Control 66 3267 [14] Xu Y, Wang J, Chen J, Zhao D, Ozer M, Xia C and Perc M 2024 Knowledge-Based Systems 301 112326 [15] Fan T, Lü L, Shi D and Zhou T 2021 Commun. Phys. 4 272 [16] Battiston F, Cencetti G, Iacopini I, Latora V, Lucas M, Patania A, Young J G and Petri G 2020 Phys. Rep. 874 1 [17] Ghorbanchian R, Restrepo J G, Torres J J and Bianconi G 2021 Commun. Phys. 4 120 [18] Lucas M, Cencetti G and Battiston F 2020 Phys. Rev. Res. 2 033410 [19] Reitz M and Bianconi G 2020 J. Phys. A: Math. Theor. 53 295001 [20] Reimann M W, Nolte M, Scolamiero M, Turner K, Perin R, Chindemi G, Dłotko P, Levi R, Hess K and Markram H 2017 Frontiers in Computational Neuroscience 11 48 [21] Majhi S, Perc M and Ghosh D 2022 Journal of the Royal Society Interface 19 20220043 [22] Dai X, Kovalenko K, Molodyk M, Wang Z, Li X, Musatov D, Raigorodskii A, Alfaro-Bittner K, Cooper G, Bianconi G, et al. 2021 Chaos, Solitons & Fractals 146 110888 [23] Zomorodian A and Carlsson G 2005 Discrete & Computational Geometry 33 249 [24] Sizemore A E, Giusti C, Kahn A, Vettel J M, Betzel R F and Bassett D S 2018 J. Comput. Neurosci. 44 115 [25] Shi D, Lü L and Chen G 2019 National Science Review 6 962 [26] Shi D, Chen Z, Sun X, Chen Q, Ma C, Lou Y and Chen G 2021 Commun. Phys. 4 249 [27] Courtney O T and Bianconi G 2016 Phys. Rev. E 93 062311 [28] Gambuzza L V, Di Patti F, Gallo L, Lepri S, Romance M, Criado R, Frasca M, Latora V and Boccaletti S 2021 Nat. Commun. 12 1255 [29] Anwar M S and Ghosh D 2022 Phys. Rev. E 106 034314 [30] Gallo L, Muolo R, Gambuzza L V, Latora V, Frasca M and Carletti T 2022 Commun. Phys. 5 263 [31] Gambuzza L V, Di Patti F, Gallo L, Lepri S, Romance M, Criado R, Frasca M, Latora V and Boccaletti S 2022 Higher-Order Systems (Springer) pp. 249-267 [32] Chen G 2022 IEEECAA Journal of Automatica Sinica 9 573 [33] Shi D and Chen G 2022 National Science Review 9 nwac038 [34] Wang Y and Zhao Y 2024 Chaos, Solitons and Fractals 185 115062 [35] Gao Z, Ghosh D, Harrington H A, Restrepo J G and Taylor D 2023 Chaos 33 040401 [36] Chen J, Sun S, Xia C, Shi D and Chen G 2023 IEEE Transactions on Network Science and Engineering 10 3767 [37] Chen J, Xia C and Perc M 2024 IEEE Transactions on Computational Social Systems 11 4267 [38] Hu J,Wu Y, Li T and Ghosh B K 2019 IEEE Transactions on Automatic Control 64 2122 [39] Wu Y, Liang Q, Zhao Y, Hu J and Xiang L 2021 European Journal of Control 59 123 [40] Wang G, Cao J and Lu J 2010 Physica A 389 1480 [41] Zhou C and Kurths J 2002 Phys. Rev. Lett. 88 230602 [42] Sun J, Xiang L and Chen G 2023 Frontiers in Physics 11 112984 [43] PorfiriMand Frasca M 2019 IEEE Transactions on Control of Network Systems 6 375 [44] Yan X, Li Z and Li C 2024 Chin. Phys. B 33 028705 [45] Russo G and Shorten R 2018 Physica D 369 47 [46] Rossa F D and DeLellis P 2020 Phys. Rev. E 101 052211 [47] Duolan, Xiang L and Chen G 2023 Chin. Phys. B 32 060502 [48] Chen G and Ueta T 1999 Int. J. Bifurc. Chaos 9 1465 [49] Lü J and Chen G 2002 Int. J. Bifur. Chaos 12 659 [50] Guo Z H, Li Z J,WangMJ and MaML 2023 Chin. Phys. B 32 038701 [51] Zhu C, Zhang P, Lu Z, Yang B and Wang Z 2023 Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 238 112 [52] Chen F, Chen X, Xiang L and Ren W 2021 Automatica 123 109356 [53] Rakshit S and Pasqualetti F 2023 IEEE Control Systems Letters 7 3259 [54] Chen F, Feng G, Liu L and Ren W 2015 IEEE Transactions on Automatic Control 60 547 [55] De Lellis P, Della Rossa F, Lo Iudice F and Liuzza D 2023 IEEE Control Systems Letters 7 691 [56] Xia R and Xiang L 2024 European Journal of Control 77 100994 [57] Zhou J, Li B, Lu J A and Shi D 2024 Scientia Sinica Informationis 54 708 [58] Xie X, Zhou Q, Yue D and Li H 2018 IEEE Transactions on Systems, Man, and Cybernetics: Systems 48 2251 [59] Wang Z, Yang K, Li L, Lu Y and Tao Y 2023 IET Intelligent Transport Systems 17 1363 [60] Hu Y, Fu J and Wen G 2023 IEEE Transactions on Intelligent Vehicles 8 2332 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|