|
|
|
Optimal synchronization of higher-order Kuramoto model on hypergraphs |
| Chong-Yang Wang(王重阳)1,2,3,†, Bi-Yun Ji(季碧芸)1,2, and Linyuan Lü(吕琳媛)4,‡1 |
1 Yangtze Delta Region Institute of University of Electronic Science and Technology of China, Huzhou 313000, China; 2 Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China; 3 Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, and Key Laboratory of Quantum Theory and Applications of Ministry of Education, Lanzhou University, Lanzhou 730000, China; 4 School of Cyber Science and Technology, University of Science and Technology of China, Hefei 230026, China |
|
|
|
|
Abstract Complex networks play a crucial role in the study of collective behavior, encompassing the analysis of dynamical properties and network topology. In real-world systems, higher-order interactions among multiple entities are widespread and significantly influence collective dynamics. Here, we extend the synchronization alignment function framework to hypergraphs of arbitrary order by leveraging the multi-order Laplacian matrix to encode higher-order interactions. Our findings reveal that the upper bound of synchronous behavior is determined by the maximum eigenvalue of the multi-order Laplacian matrix. Furthermore, we decompose the contribution of each hyperedge to this eigenvalue and utilize it as a basis for designing an eigenvalue-based topology modification algorithm. This algorithm effectively enhances the upper bound of synchronous behavior without altering the total number of higher-order interactions. Our study provides new insights into dynamical optimization and topology tuning in hypergraphs, advancing the understanding of the interplay between higher-order interactions and collective dynamics.
|
Received: 10 February 2025
Revised: 08 April 2025
Accepted manuscript online: 17 April 2025
|
|
PACS:
|
05.45.Xt
|
(Synchronization; coupled oscillators)
|
| |
05.10.-a
|
(Computational methods in statistical physics and nonlinear dynamics)
|
| |
64.60.aq
|
(Networks)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12247153, T2293771, and 12247101), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LTGY24A050002), the Sichuan Science and Technology Program (Grant Nos. 2024NSFSC1364 and 2023NSFSC1919), the Project of Huzhou Science and Technology Bureau (Grant No. 2022YZ29), the UESTCYDRI research start-up (Grant No. U03210066), and the New Cornerstone Science Foundation through the Xplorer Prize. |
Corresponding Authors:
Chong-Yang Wang, Linyuan Lü
E-mail: wangchongyang@csj.uestc.edu.cn;linyuan.lv@uestc.edu.cn
|
Cite this article:
Chong-Yang Wang(王重阳), Bi-Yun Ji(季碧芸), and Linyuan Lü(吕琳媛) Optimal synchronization of higher-order Kuramoto model on hypergraphs 2025 Chin. Phys. B 34 070502
|
[1] Strogatz S H 2003 Sync: The Emerging Science of Spontaneous Order (New York, Hyperion) [2] Fell J and Axmacher N 2011 Nat. Rev. Neurosci. 12 105 [3] Wang C Y, Zhang J Q, Wu Z X and Guan J Y 2021 Phys. Rev. E 103 022312 [4] Pluchino A, Latora V and Rapisarda A 2005 Int. J. Mod. Phys. C 16 515 [5] Shahal S, Wurzberg A, Sibony I, Duadi H, Shniderman E, Weymouth D, Davidson N and Fridman M 2020 Nat. Commun. 11 3854 [6] Acebrón J A, Bonilla L L, Pérez Vicente C J, Ritort F and Spigler R 2005 Rev. Mod. Phys. 77 137 [7] Rohden M, Sorge A, Timme M and Witthaut D 2012 Phys. Rev. Lett. 109 064101 [8] Skardal P S and Arenas A 2015 Sci. Adv. 1 e1500339 [9] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47 [10] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175 [11] Newman M E J 2018 Networks: An Introduction, 2nd ed (New York: Oxford University Press) [12] Arenas A, Díaz-Guilera A, Kurths J, Moreno Y and Zhou C 2008 Phys. Rep. 469 93 [13] Rodrigues F A, Peron T K D, Ji P and Kurths J 2016 Phys. Rep. 610 1 [14] Wu X,Wu X,Wang C Y, Mao B, Lu J, Lü J, Zhang Y C and Lü L 2024 Phys. Rep. 1060 1 [15] Duolan, Xiang L and Chen G 2023 Chin. Phys. B 32 060502 [16] Benson A R, Gleich D F and Leskovec J 2016 Science 353 163 [17] Battiston F, Amico E, Barrat A, Bianconi G, Ferraz De Arruda G, Franceschiello B, Iacopini I, Kéfi S, Latora V, Moreno Y, Murray M M, Peixoto T P, Vaccarino F and Petri G 2021 Nat. Phys. 17 1093 [18] Zheng H X, Miao S Y and Gu C G 2024 Chin. Phys. B 33 058401 [19] Salnikov V, Cassese D and Lambiotte R 2019 Eur. J. Phys. 40 014001 [20] Battiston F, Cencetti G, Iacopini I, Latora V, Lucas M, Patania A, Young J G and Petri G 2020 Phys. Rep. 874 1 [21] Bianconi G 2021 Higher-Order Networks (Cambridge: Cambridge University Press) [22] Liu B, Zeng Y J, Yang RMand Lü L Y 2024 Acta Phys. Sin. 73 128901 (in Chinese) [23] Tanaka T and Aoyagi T 2011 Phys. Rev. Lett. 106 224101 [24] Skardal P S and Arenas A 2019 Phys. Rev. Lett. 122 248301 [25] Berner R, Vock S, Schöll E and Yanchuk S 2021 Phys. Rev. Lett. 126 028301 [26] Kovalenko K, Dai X, Alfaro-Bittner K, Raigorodskii A M, Perc M and Boccaletti S 2021 Phys. Rev. Lett. 127 258301 [27] Zhang Y, Skardal P S, Battiston F, Petri G and Lucas M 2024 Sci. Adv. 10 eado8049 [28] Wu Y, Yu H, Zheng Z and Xu C 2024 Chin. Phys. B 33 040504 [29] Skardal P S and Arenas A 2020 Commun. Phys. 3 218 [30] Lucas M, Cencetti G and Battiston F 2020 Phys. Rev. Res. 2 033410 [31] Kundu S and Ghosh D 2022 Phys. Rev. E 105 L042202 [32] Ji B Y, Wang C Y and Lü L 2025 New J. Phys. 27 043012 [33] Zheng Z 2019 Emergence dynamics in complex systems: From synchronization to collective transport (Beijing: Science Publishing House) (in Chinese) [34] Skardal P S, Taylor D and Sun J 2014 Phys. Rev. Lett. 113 144101 [35] Skardal P S, Arola-Fernández L, Taylor D and Arenas A 2021 Phys. Rev. Res. 3 043193 [36] Wang X F and Chen G 2002 IEEE Trans. Circuits Syst. I 49 54 [37] Restrepo J G, Ott E and Hunt B R 2005 Phys. Rev. E 71 036151 [38] Gómez-Gardeñes J and Moreno Y 2006 Phys. Rev. E 73 056124 [39] Gómez-Gardeñes J and Moreno Y 2011 Phys. Rev. Lett. 106 128701 [40] Hart J D, Zhang Y, Roy R and Motter A E 2019 Phys. Rev. Lett. 122 058301 [41] Chen W, Gao J, Lan Y and Xiao J 2022 Phys. Rev. E 105 044302 [42] Hossein Ghorban S, Hesaam B and Sarbazi-Azad H 2022 J. Stat. Mech. 2022 113404 [43] Tang Y, Shi D and Lü L 2022 Commun. Phys. 5 96 [44] Kuramoto Y 1984 Chemical Oscillations, Waves, and Turbulence (Berlin, Heidelberg: Springer) [45] Wang H, Ma C, Chen H S, Lai Y C and Zhang H F 2022 Nat. Commun. 13 3043 [46] Das K C and Bapat R 2005 Linear Algebra Appl. 409 153 [47] Gambuzza L V, Di Patti F, Gallo L, Lepri S, Romance M, Criado R, Frasca M, Latora V and Boccaletti S 2021 Nat. Commun. 12 1255 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|