Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 040601    DOI: 10.1088/1674-1056/adacc6
GENERAL Prev   Next  

Finite time hybrid synchronization of heterogeneous duplex complex networks via time-varying intermittent control

Cheng-Jun Xie(解成俊)1,2 and Xiang-Qing Lu(卢向清)1,2,3,†
1 College of Artificial Intelligence and Electrical Engineering, Guangzhou College of Applied Science and Technology, Zhaoqing 526000, China;
2 Institute of Intelligent Manufacturing, Guangzhou College of Applied Science and Technology, Zhaoqing 526000, China;
3 College of Computers and Technology, BeiHua University, Jilin 132021, China
Abstract  This paper study the finite time internal synchronization and the external synchronization (hybrid synchronization) for duplex heterogeneous complex networks by time-varying intermittent control. There few study hybrid synchronization of heterogeneous duplex complex networks. Therefore, we study the finite time hybrid synchronization of heterogeneous duplex networks, which employs the time-varying intermittent control to drive the duplex heterogeneous complex networks to achieve hybrid synchronization in finite time. To be specific, the switch frequency of the controllers can be changed with time by devise Lyapunov function and boundary function, the internal synchronization and external synchronization are achieved simultaneously in finite time. Finally, numerical examples are presented to illustrate the validness of theoretical results.
Keywords:  finite time synchronization      time-varying intermittent control      duplex heterogeneous networks      complex networks  
Received:  26 October 2024      Revised:  07 January 2025      Accepted manuscript online:  22 January 2025
PACS:  06.30.Ft (Time and frequency)  
  05.45.Vx (Communication using chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by Jilin Provincial Science and Technology Development Plan (Grant No. 20220101137JC).
Corresponding Authors:  Xiang-Qing Lu     E-mail:  lxqbhdxyjs@163.com

Cite this article: 

Cheng-Jun Xie(解成俊) and Xiang-Qing Lu(卢向清) Finite time hybrid synchronization of heterogeneous duplex complex networks via time-varying intermittent control 2025 Chin. Phys. B 34 040601

[1] Zhang X, Quah C H and Nazri Bin Mohd Nor M 2023 Sci. Rep. 13 10301
[2] Pavani S, Kumar S P and Bolla S 2024 AIP Conf. Proc., January 22 2024, Andhra Pradesh, India, 020032
[3] Danesh T, Ouaret R and Floquet P 2022 Comput. Aided Chem. Eng. Elsevier 51 1501
[4] Ma M L, Xiong K L, Li Z J and He B 2024 Chin. Phys. B 33 028706
[5] Wang H J, Xu Y H and Li M 2024 Int. J. Mod. Phys. C 35 2450104
[6] Yang P, Fan R and Wang Y 2024 Chin. Phys. B 33 070206
[7] Wu Y, Sun Z and Ran G 2023 IEEE-CAA. J. Automatic 10 1488
[8] Chaudhary H, SajidMand Kaushik S 2023 Math. Biosci. Eng. 20 9410
[9] Lu Q, Lu W and Zhang Y 2024 Int. J. Model. Simula. Sci. Comput 15 2450015
[10] Yan J Z and Zhang M 2005 Chin. Phys. Lett. 22 2183
[11] Geng X, Feng J and Zhao Y 2023 Electron. Res. Arch 31 3291
[12] Kumar S, Matouk A E and Kumar P 2023 J. Uncertain. Syst. 16 2330002
[13] Guo B and Xiao Y 2024 Math. Comput. Simul. 219 435
[14] Mossa Al-sawalha M and Noorani M S M 2011 Chin. Phys. Lett. 28 110507
[15] Guo Q, Chen Z and Shi Y 2022 Mech. Syst. Signal. Process 178 109280
[16] Ma X H and Wang J A 2016 Neurocomputing 199 197
[17] Zhang C, Wang X and Wang C 2017 Int. J. Mod. Phys. C 28 1750108
[18] Wu Y, Zhuang G and Wang Y 2024 J. Franklin. Inst. 2024 106966
[19] Wang L, Tan X and Wang Q 2023 Neural. Comput. 552 126555
[20] Wang L, Yang X and Liu H 2023 Fractal. Fract. 7 347
[21] Yang X, Chen W and Wu L 2023 Electr. Power Syst. Res. 221 109492
[22] Zha J and Zhang H J 2024 Chin. J. Mech. Eng. 37 46
[23] Liu P, Yong J and Zhao J 2024 J. Franklin. Inst. 361 106869
[24] Aslam M S, Li Q and Hou J 2022 Adv. Contin. Discret. Model 2022 21
[25] Wei X, Emenheiser J, Wu X Q, Lu J A and D’Souza R M 2018 Chaos 28 013110
[26] Wei J, Wu X Q, Lu J A and Wei X 2017 Europhys. Lett. 120 20005
[27] Pluchino A, Latora V, and Rapisarda A 2006 Eur. Phys. J. B 50 169
[28] Wang Z X, Jiang G P, Yu W W, He W l, Cao Ji D and Xiao M 2017 J. Franklin Inst. 354 4102
[29] Gregorio D and Antonio S 2014 Networks of Networks: The Last Frontier of Complexity (Cham: Springer) pp. 53-54
[30] Yu Z Y, Yu S Z and Jiang H J 2023 Chaos, Solitons and Fractals 173 113735
[31] Zhang X D and Cui L J 2011 Acta Phys. Sin. 60 110511 (in Chinese)
[1] Global dynamics and optimal control of SEIQR epidemic model on heterogeneous complex networks
Xiongding Liu(柳雄顶), Xiaodan Zhao(赵晓丹), Xiaojing Zhong(钟晓静), and Wu Wei(魏武). Chin. Phys. B, 2025, 34(6): 060203.
[2] GPIC: A GPU-based parallel independent cascade algorithm in complex networks
Chang Su(苏畅), Xu Na(那旭), Fang Zhou(周方), and Linyuan Lü(吕琳媛). Chin. Phys. B, 2025, 34(3): 030204.
[3] Node ranking based on graph curvature and PageRank
Hongbo Qu(曲鸿博), Yu-Rong Song(宋玉蓉), Ruqi Li(李汝琦), Min Li(李敏), and Guo-Ping Jiang(蒋国平). Chin. Phys. B, 2025, 34(2): 028901.
[4] Dynamic analysis of major public health emergency transmission considering the dual-layer coupling of community-resident complex networks
Peng Yang(杨鹏), Ruguo Fan(范如国), Yibo Wang(王奕博), and Yingqing Zhang(张应青). Chin. Phys. B, 2024, 33(7): 070206.
[5] Effects of individual heterogeneity on social contagions
Fu-Zhong Nian(年福忠) and Yu Yang(杨宇). Chin. Phys. B, 2024, 33(5): 058705.
[6] Prediction of collapse process and tipping points for mutualistic and competitive networks with k-core method
Dongli Duan(段东立), Feifei Bi(毕菲菲), Sifan Li(李思凡), Chengxing Wu(吴成星), Changchun Lv(吕长春), and Zhiqiang Cai(蔡志强). Chin. Phys. B, 2024, 33(5): 050201.
[7] Identifying influential spreaders in complex networks based on density entropy and community structure
Zhan Su(苏湛), Lei Chen(陈磊), Jun Ai(艾均), Yu-Yu Zheng(郑雨语), and Na Bie(别娜). Chin. Phys. B, 2024, 33(5): 058901.
[8] A multilayer network diffusion-based model for reviewer recommendation
Yiwei Huang(黄羿炜), Shuqi Xu(徐舒琪), Shimin Cai(蔡世民), and Linyuan Lü(吕琳媛). Chin. Phys. B, 2024, 33(3): 038901.
[9] Source localization in signed networks with effective distance
Zhi-Wei Ma(马志伟), Lei Sun(孙蕾), Zhi-Guo Ding(丁智国), Yi-Zhen Huang(黄宜真), and Zhao-Long Hu(胡兆龙). Chin. Phys. B, 2024, 33(2): 028902.
[10] Identify information sources with different start times in complex networks based on sparse observers
Yuan-Zhang Deng(邓元璋), Zhao-Long Hu(胡兆龙), Feilong Lin(林飞龙), Chang-Bing Tang(唐长兵), Hui Wang(王晖), and Yi-Zhen Huang(黄宜真). Chin. Phys. B, 2024, 33(11): 118901.
[11] Self-similarity of complex networks under centrality-based node removal strategy
Dan Chen(陈单), Defu Cai(蔡德福), and Housheng Su(苏厚胜). Chin. Phys. B, 2023, 32(9): 098903.
[12] Important edge identification in complex networks based on local and global features
Jia-Hui Song(宋家辉). Chin. Phys. B, 2023, 32(9): 098901.
[13] Stability and multistability of synchronization in networks of coupled phase oscillators
Yun Zhai(翟云), Xuan Wang(王璇), Jinghua Xiao(肖井华), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2023, 32(6): 060503.
[14] Identification of key recovering node for spatial networks
Zijian Yan(严子健), Yongxiang Xia(夏永祥), Lijun Guo(郭丽君), Lingzhe Zhu(祝令哲), Yuanyuan Liang(梁圆圆), and Haicheng Tu(涂海程). Chin. Phys. B, 2023, 32(6): 068901.
[15] AG-GATCN: A novel method for predicting essential proteins
Peishi Yang(杨培实), Pengli Lu(卢鹏丽), and Teng Zhang(张腾). Chin. Phys. B, 2023, 32(5): 058902.
No Suggested Reading articles found!