Abstract Maximal steered coherence (MSC) is a noteworthy resource measure in the field of quantum information, and it is defined under the framework of coherence measure and the formalism of quantum steering ellipsoids (QSEs). Here, we explore the MSC of a two-qubit X state under the common influences of reservoir and noise. The results disclose that the introduction of auxiliary qubits can give rise to enhancement of the MSC in both the strong and weak coupling regimes. Moreover, more auxiliary qubits can decrease the oscillation period of the MSC, and also suppress the oscillation amplitude of the MSC in the strong coupling regime. In contrast, the increases in auxiliary qubits result in the oscillation of the MSC for the setting of the initially weak coupling regime. Of particular interest is that the improvement effects of more auxiliary qubits on the MSC in the initially weak coupling regime are significantly stronger than that in the initially strong coupling regime.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12175001), the Key Project of Natural Science Research of West Anhui University (Grant No. WXZR202311), the Open Fund of Anhui Undergrowth Crop Intelligent Equipment Engineering Research Center (Grant No. AUCIEERC-2022-01), Anhui Undergrowth Crop Intelligent Equipment Engineering Research Center (Grant No. 2022AH010091), the Natural Science Research Key Project of Education Department of Anhui Province of China (Grant No. 2023AH052648), the University Synergy Innovation Program of Anhui Province (Grant No. GXXT-2021-026), and the Anhui Provincial Natural Science Foundation (Grant Nos. 2108085MA18 and 2008085MA20).
Corresponding Authors:
Huan Yang, Gang Zhang
E-mail: hyang@wxc.edu.cn;zhanggang@wxc.edu.cn
Cite this article:
Ling-Ling Xing(邢玲玲), Huan Yang(杨欢), and Gang Zhang(张刚) Investigating maximal steered coherence under the common impacts of reservoir and noise 2025 Chin. Phys. B 34 050304
[1] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401 [2] Streltsov A, Adesso G and PlenioMB 2017 Rev. Mod. Phys. 89 041003 [3] Hu M L, Hu X Y,Wang J C, Peng Y, Zhang Y R and Fan H 2018 Phys. Rep. 762-764 1 [4] Napoli C, Bromley T R, Cianciaruso M, Piani M, Johnston N and Adesso G 2016 Phys. Rev. Lett. 116 150502 [5] Zhang D J and Tong D M 2024 Phys. Rev. Lett. 133 040202 [6] Du M M, Khan A S, Zhou Z Y and Zhang D J 2022 Sci. China Phys. Mech. Astron. 65 100311 [7] Zhang D J, Wang Q H and Gong J 2019 Phys. Rev. A 99 042104 [8] Zhang D J and Gong J 2020 Phys. Rev. Research 2 023418 [9] Zhou Z Y, Qiu Z Y and Zhang D J 2024 Phys. Rev. Res. 6 L032048 [10] D J Zhang and D M Tong 2022 npj Quantum Inf. 8 81 [11] Zhang D J, Wang Q H and Gong J 2019 Phys. Rev. A 100 062121 [12] Girolami D 2014 Phys. Rev. Lett. 113 170401 [13] Yu C S 2017 Phys. Rev. A. 95 042337 [14] Winter A and Yang D 2016 Phys. Rev. Lett. 116 120404 [15] Napoli C, Bromley T R, Cianciaruso M, Piani M, Johnston N and Adesso G 2016 Phys. Rev. Lett. 116 150502 [16] Piani M, Cianciaruso M, Bromley T R, Napoli C, Johnston N and Adesso G 2016 Phys. Rev. A 93 042107 [17] Mondal D, Pramanik T and Pati A K 2017 Phys. Rev. A 95 010301 [18] Mondal D and Kaszlikowski D 2018 Phys. Rev. A 98 052330 [19] Hu M L, Wang X M and Fan H 2018 Phys. Rev. A 98 032317 [20] Hu M L and Fan H 2018 Phys. Rev. A 98 022312 [21] Datta S and Majumdar A S 2018 Phys. Rev. A 98 042311 [22] Ding Z Y, Yang H, Yuan H, Wang D, Yang J and Ye L 2019 Phys. Rev. A 100 022308 [23] Ming F, Song X K, Ling J J, Ye L and Wang D 2020 Eur. Phys. J. C 80 275 [24] Zhang D J, Liu C L, Yu X D and Tong D M 2018 Phys. Rev. Lett. 120 170501 [25] Jevtic S, Pusey M, Jennings D and Rudolph T 2014 Phys. Rev. Lett. 113 020402 [26] Milne A, Jevtic S, Jennings D, Wiseman H and Rudolph T 2014 New J. Phys. 16 083017 [27] Milne A, Jennings D, Jevtic S and Rudolph T 2014 Phys. Rev. A 90 024302 [28] Hu X Y and Fan H 2015 Phys. Rev. A 91 022301 [29] Shi M J, Jiang F J, Sun C X and Du J F 2011 New J. Phys. 13 073016 [30] Shi M J, Sun C X, Jiang F J, Yan X H and Du J F 2012 Phys. Rev. A 85 064104 [31] Du M M, Zhang D J, Zhou Z Y and Tong D M 2021 Phys. Rev. A. 104 012418 [32] Nguyen H C and Vu T 2016 Phys. Rev. A 94 012114 [33] Jevtic S, Hall M J W, Anderson M R, Zwierz M and Wiseman H M 2015 J. Opt. Soc. Am. B 32 A40 [34] Quan Q, Zhu H J, Liu S Y, Fei S M, Fan H and Yang W L 2016 Sci. Rep. 6 22025 [35] Nguyen H C and Vu T 2016 Europhys. Lett. 115 10003 [36] McCloskey R, Ferraro A and Paternostro M 2017 Phys. Rev. A 95 012320 [37] Caban P, Rembielinski J, Smolinski K A andWalczak Z 2017 Quantum Inf. Process. 16 178 [38] Yang H, Xing L L, Du M M, Kong M, Zhang G and Ye L 2023 Chin. Phys. B 32 100305 [39] Hu X Y, Milne A, Zhang B Y and Fan H 2016 Sci. Rep. 6 19365 [40] Yang H, Du M M, Sun W Y, Ding Z Y, Wang D, Zhang C J and Ye L 2018 Laser Phys. Lett. 15 125201 [41] Yang H, Ding Z Y, SunWY, Ming F, Fan X G,Wang D, Zhang C J and Ye L 2019 Quantum Inf. Process. 18 299 [42] Maleki Y and Ahansaz B 2020 Phys. Rev. A 102 020402 [43] Lan Y T and Hu M L 2023 Results Phys. 54 107050 [44] Li H W, Fan Y H, Shen S T, Yan X J, Li X Y, Zhong W, Sheng Y B, Zhou L and Du M M 2024 Eur. Phys. J. C 84 1241 [45] An B N 2013 Phys. Lett. A 377 2520 [46] Behzadi N, Ahansaz B and Faizi E 2017 Eur. Phys. J. D 71 280 [47] Faizi E and Ahansaz B 2019 Phys. Scr. 94 115102 [48] Nourmandipour A, Tavassoly M K and Rafiee M 2016 Phys. Rev. A 93 022327 [49] Nourmandipour A, Tavassoly M K and Bolorizadeh M A 2016 J. Opt. Soc. Am. B 33 1723 [50] Stárek R, Mičuda M, Straka I, Nováková M, Dušek M, Ježek M, Fiurášek J and Filip R 2020 New J. Phys. 22 093058 [51] Dias J, Wächtler C W, Nemoto K and Munro W J 2023 Phys. Rev. Research 5 043295 [52] Götting N, Lohof F and Gies C 2023 Phys. Rev. A 108 052427 [53] Kora Y, Zadeh-Haghighi H, Stewart T C, Heshami K and Simon C 2024 Phys. Rev. A 110 042416 [54] Xie Y X and Sun Y H 2024 Phys. Lett. A 525 129851 [55] Rastegar-Sedehi H R and Cruz C 2024 Phys. Scr. 99 125936 [56] Huang Y Y 2024 Results Phys. 64 107931 [57] Xu Q 2024 Phys. Scr. 99 105128 [58] Liu Z Q, Liu J, Tan L and Liu W M 2024 Phys. Rev. A 110 023707 [59] Yang H, Xing L L, Kong M, Zhang G and Ye L 2023 Eur. Phys. J. C 83 966 [60] Hu M L and Xu X X 2022 Ann. Phys. (Berlin) 534 2100412 [61] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge University Press) [62] Wang S C, Yu Z W, Zou W J and Wang X B 2014 Phys. Rev. A 89 022318 [63] Zou W J, Li Y H, Wang S C, Cao Y, Ren S C, Yin J, Peng S C, Wang X B and Pan J W 2017 Phys. Rev. A 95 042342 [64] Ming F, Wang D, Huang A J, Sun W Y and Ye L 2018 Quantum Inf. Process. 17 9 [65] Xu Z Y, Yang W L and Feng M 2012 Phys. Rev. A 86 012113
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.