Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 070601    DOI: 10.1088/1674-1056/ad3dc9
GENERAL Prev   Next  

Proposal for a realtime Einstein-synchronization-defined satellite virtual clock

Chenhao Yan(严晨皓)1, Xueyi Tang(汤雪逸)1, Shiguang Wang(王时光)1,†, Lijiaoyue Meng(孟李皎悦)1, Haiyuan Sun(孙海媛)1, Yibin He(何奕彬)1, and Lijun Wang(王力军)1,2,‡
1 Department of Precision Instrument, Tsinghua University, Beijing 100091, China;
2 Department of Physics, Tsinghua University, Beijing 100091, China
Abstract  Realization of high performance satellite onboard clock is vital for various positioning, navigation, and timing applications. For further improvement of the synchronization-based satellite time and frequency references, we propose a geosynchronous (GEO) satellite virtual clock concept based on ground-satellite synchronization and present a beacon transponder structure for its implementation (scheduled for launch in 2025), which does not require atomic clocks to be mounted on the satellite. Its high performance relies only on minor modifications to the existing transponder structure of GEO satellites. We carefully model the carrier phase link and analyze the factors causing link asymmetry within the special relativity. Considering that performance of such synchronization-based satellite clocks is primarily limited by the link's random phase noise, which cannot be adequately modeled, we design a closed-loop experiment based on commercial GEO satellites for pre-evaluation. This experiment aims at extracting the zero-means random part of the ground-satellite Ku-band carrier phase via a feedback loop. Ultimately, we obtain a 1$\sigma$ value of 0.633 ps (two-way link), following the Gaussian distribution. From this result, we conclude that the proposed real-time Einstein-synchronization-defined satellite virtual clock can achieve picosecond-level replication of onboard time and frequency.
Keywords:  Einstein synchronization      satellite virtual clock      geosynchronous satellite      carrier phase  
Received:  07 January 2024      Revised:  18 March 2024      Accepted manuscript online:  12 April 2024
PACS:  06.30.Ft (Time and frequency)  
  84.40.Ua (Telecommunications: signal transmission and processing; communication satellites)  
Fund: This work was supported by the National Key Research and Development Program of China (Grant No. 2021YFA1402100).
Corresponding Authors:  Shiguang Wang, Lijun Wang     E-mail:  wangsg@tsinghua.edu.cn;lwan@tsinghua.edu.cn

Cite this article: 

Chenhao Yan(严晨皓), Xueyi Tang(汤雪逸), Shiguang Wang(王时光), Lijiaoyue Meng(孟李皎悦), Haiyuan Sun(孙海媛), Yibin He(何奕彬), and Lijun Wang(王力军) Proposal for a realtime Einstein-synchronization-defined satellite virtual clock 2024 Chin. Phys. B 33 070601

[1] Barsocchi P, Celandroni N, Davoli F, Ferro E, Giambene G, Castano F J G, Gotta A, Moreno J I and Todorova P 2005 Int. J. Satell. Commun. Network. 23 265
[2] Koudelka O and Schrotter P 2007 Acta Astronaut. 60 986
[3] Minnett P J, Alvera-Azcarate A, Chin T M, Corlett G K, Gentemann C L, Karagali I, Li X, Marsouin A, Marullo S, Maturi E and others 2019 Remote Sens. Environ. 233 111366
[4] Yang M, Xu F, Ren J G, Yin J, Li Y, Cao Y, Shen Q, Yong H L, Zhang L, Liao S K and others 2019 Opt. Express 27 36114
[5] Zhan Y F, Wan P, Jiang C X, Pan X H, Chen X and Guo S 2020 IEEE Wirel. Commun. 27 12
[6] Chawla I, Karthikeyan L and Mishra A K 2020 J. Hydrol. 585 124826
[7] Wu Z Q, Zhou S S, Hu X G, Liu L, Shuai T, Xie Y H, Tang C P, Pan J Y, Zhu L F and Chang Z Q 2018 GPS Solut. 22 1
[8] Huang G W, Cui B B, Xu Y and Zhang Q 2019 Adv. Space Res. 63 2899
[9] Janis J P, Jones M R and Quackenbush N F 2021 GPS Solut. 25 141
[10] Wang Q H, Droz F and Rochat P 2011 Geomatics and Information Science of Wuhan University 36 1177
[11] Dong S W, Wu H T, Li X H, Guo S R and Yang Q W 2008 Metrologia 45 S47
[12] Burt E A, Prestage J D, Tjoelker R L, Enzer D G, Kuang D, Murphy D W, Robison D E, Seubert J M, Wang R T and Ely T A 2021 Nature 595 43
[13] Qin W J, Ge Y L, Wei P, Dai P P and Yang X H 2020 Measurement 153 107356
[14] Cao Y, Huang G W, Xie W, Xie S C and Wang H H 2021 Acta Geodaetica et Geophysica 56 303
[15] Gu S F, Mao F Y, Gong X P, Lou Y D, Xu X Y and Zhou Y 2021 Remote Sens-Basel. 13 5041
[16] Yao J, Yoon S, Stressler B, Hilla S and Schenewerk M 2021 GPS Solut. 25 106
[17] Lee S W, Kim J, Jeong M S and Lee Y J 2011 Adv. Space Res. 47 1654
[18] Zhou W, Ruan R G, Jia X L and Jin R 2020 China Satellite Navigation Conference (CSNC) 2020 Proceedings (Singapore: Springer) vol. 3 p. 134
[19] Cernigliaro A, Valloreia S, Galleani L and Tavella P 2013 2013 International Conference on Localization and GNSS (ICL-GNSS), June 25-27, 2013, Turin, Italy, p. 1
[20] Tappero F, Dempster A, Iwata T, Imae M, Ikegami T, Fukuyama Y, Hagimoto K and Iwasaki A 2006 Navigation 53 219
[21] Iwata T, Kawasaki Y, Imae M, Suzuyama T, Matsuzawa T, Fukushima S, Hashibe Y, Takasaki N, Kokubu K, Iwasaki A and others 2007 Navigation 54 99
[22] Iwata T, Suzuyama T, Imae M, Hashibe Y and others 2010 International Journal of Navigation and Observation 2010 604239
[23] Li X H, Wu H T, Bian Y J and Wang D N 2009 Sci. China Ser. G 52 353
[24] Jing W F and Lu X C 2017 2017 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), July 9-13, 2017, Besancon, France, p. 6
[25] Wu H T, Bian Y J, Lu X C, Li X H and Wang D N 2009 Sci. China Ser. G 52 393
[26] Marlow B L S and Scherer D R 2021 IEEE Trans. Ultrason. Ferr. 68 2007
[27] Diddams S A, Bergquist J C, Jefferts S R and Oates C W 2004 Science 306 1318
[28] Nakamura T, Davila-Rodriguez J, Leopardi H, Sherman J A, Fortier T M, Xie X, Campbell J C, McGrew W F, Zhang X, Hassan Y S and others 2020 Science 368 889
[29] Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B and Leibrandt D R 2019 Phys. Rev. Lett. 123 033201
[30] Zhang H, Ruan J, Liu D D, Yang F, Fan S C, Bai Y, Guan Y, Wang X L, Shi J R and Zhang S G 2022 IEEE Trans. Instrum. Meas. 71 1
[31] Rovira-Garcia A, Juan J M, Sanz J, Gonzalez-Casado G, VenturaTraveset J, Cacciapuoti L and Schoenemann E 2021 Navigation-US 68 815
[32] Fonville B, Matsakis D, Pawlitzki A and Schaefer W 2004 Proceedings of the 36th Annual Precise Time and Time Interval Systems and Applications Meeting, 7-9 December, 2004, Washington DC, p. 149
[33] Fujieda M, Gotoh T and Amagai J 2016 J. Phys.: Conf. Ser. 723 012036
[34] Fujieda M, Piester D, Gotoh T, Becker J, Aida M and Bauch A 2014 Metrologia 51 253
[35] Fujieda M, Gotoh T, Nakagawa F, Tabuchi R, Aida M and Amagai J 2012 IEEE Trans. Ultrason. Ferr. 59 2625
[36] Nakagawa F, Amagai J, Tabuchi R, Takahashi Y, Nakamura M, Tsuchiya S and Hama S 2013 Metrologia 50 200
[37] Shapiro S S and Wilk M B 1965 Biometrika 52 591
[38] Gurvits L I 2020 Adv. Space Res. 65 868
[39] D’Addario L R 1991 IEEE T. Instrum. Meas. 40 584
[40] Piester D and Schnatz H 2009 PTB-Mitteilungen 119 33
[41] Panfilo G and Arias F 2019 Metrologia 56 042001
[1] Physics package based on intracavity laser cooling 87Rb atoms for space cold atom microwave clock
Siminda Deng(邓思敏达), Wei Ren(任伟), Jingfeng Xiang(项静峰), Jianbo Zhao(赵剑波), Lin Li(李琳), Di Zhang(张迪), Jinyin Wan(万金银), Yanling Meng(孟艳玲), Xiaojun Jiang(蒋小军), Tang Li(李唐), Liang Liu(刘亮), and Desheng Lü(吕德胜). Chin. Phys. B, 2024, 33(7): 070602.
[2] Two-dimensional-lag complex logistic map with complex parameters and its encryption application
Fangfang Zhang(张芳芳), Jinbo Wu(武金波), Lei Kou(寇磊), Fengying Ma(马凤英), Liming Wu(吴黎明), and Xue Zhang(张雪). Chin. Phys. B, 2024, 33(5): 050505.
[3] A proposal for detecting weak electromagnetic waves around 2.6 μm wavelength with Sr optical clock
Ruo-Shui Han(韩弱水), Wei Wang(王伟), and Tao Wang(汪涛). Chin. Phys. B, 2024, 33(4): 043201.
[4] A redundant subspace weighting procedure for clock ensemble
Hai Xu(徐海), Yu Chen(陈煜), Mo-Chi Liu(刘默驰), and Yu-Zhuo Wang(王玉琢). Chin. Phys. B, 2024, 33(4): 040601.
[5] Coherent optical frequency transfer via 972-km fiber link
Xue Deng(邓雪), Xiang Zhang(张翔), Qi Zang(臧琦), Dong-Dong Jiao(焦东东), Dan Wang(王丹), Jie Liu(刘杰), Jing Gao(高静), Guan-Jun Xu (许冠军), Rui-Fang Dong(董瑞芳), Tao Liu(刘涛), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2024, 33(2): 020602.
[6] Robust free-space optical frequency transfer in time-varying link distances conditions
Zhou Tong(童周), Lei Liu(刘雷), Jia-Liang Wang(王家亮), Qian Cao(操前), Zhi-Cheng Jin(金志成), Kang Ying(应康), Shen-Sheng Han(韩申生), Zheng-Fu Han(韩正甫), and You-Zhen Gui(桂有珍). Chin. Phys. B, 2024, 33(2): 020601.
[7] A step to the decentralized real-time timekeeping network
Fangmin Wang(王芳敏), Yufeng Chen(陈雨锋), Jianhua Zhou(周建华), Yuting Lin(蔺玉亭), Jun Yang(杨军), Bo Wang(王波), and Lijun Wang(王力军). Chin. Phys. B, 2024, 33(1): 010702.
[8] Sympathetic electromagnetically induced transparency ground state cooling of a 40Ca+27Al+ pair in an 27Al+ clock
Chenglong Sun(孙成龙), Kaifeng Cui(崔凯枫), Sijia Chao(晁思嘉), Yuanfei Wei(魏远飞), Jinbo Yuan(袁金波), Jian Cao(曹健), Hualin Shu(舒华林), and Xueren Huang(黄学人). Chin. Phys. B, 2023, 32(5): 050601.
[9] Measurements of Majorana transition frequency shift in caesium atomic fountain clocks
Jun-Ru Shi(施俊如), Xin-Liang Wang(王心亮), Fan Yang(杨帆), Yang Bai(白杨), Yong Guan(管勇), Si-Chen Fan(范思晨), Dan-Dan Liu(刘丹丹), Jun Ruan(阮军), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2023, 32(4): 040602.
[10] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[11] Data encryption based on a 9D complex chaotic system with quaternion for smart grid
Fangfang Zhang(张芳芳), Zhe Huang(黄哲), Lei Kou(寇磊), Yang Li(李扬), Maoyong Cao(曹茂永), and Fengying Ma(马凤英). Chin. Phys. B, 2023, 32(1): 010502.
[12] Laboratory demonstration of geopotential measurement using transportable optical clocks
Dao-Xin Liu(刘道信), Jian Cao(曹健), Jin-Bo Yuan(袁金波), Kai-Feng Cui(崔凯枫), Yi Yuan(袁易),Ping Zhang(张平), Si-Jia Chao(晁思嘉), Hua-Lin Shu(舒华林), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2023, 32(1): 010601.
[13] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[14] Enhanced cold mercury atom production with two-dimensional magneto-optical trap
Ye Zhang(张晔), Qi-Xin Liu(刘琪鑫), Jian-Fang Sun(孙剑芳), Zhen Xu(徐震), and Yu-Zhu Wang(王育竹). Chin. Phys. B, 2022, 31(7): 073701.
[15] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
No Suggested Reading articles found!