|
|
|
Synchronous dynamics of robotic arms driven by Chua circuits |
| Guoping Sun(孙国平), Mingxin Xu(许明鑫), Guoqiang Jin(金国强), and Xufeng Wang(王旭峰)† |
| College of Mechanical and Electrical Engineering, Tarim University, Aral 843300, China |
|
|
|
|
Abstract This study investigates chaotic synchronization via field-coupled nonlinear circuits, achieving both electrical synchronization and energy balance. The driving mechanism biomimetically parallels neuromuscular signal transduction, where synchronized neuronal firing induces coordinated muscle contractions that produce macroscopic movement. We implement a Chua circuit-driven robotic arm with tunable periodic/chaotic oscillations through parameter modulation and external current injection. Bifurcation analysis maps oscillation modes under varying external stimuli. Inductive coupling between two systems with distinct initial conditions facilitates magnetic energy transfer, optimized by an energy balance criterion. A bio-inspired exponential gain method dynamically regulates the coupling strength to optimize the energy transfer efficiency. The effects of ambient electromagnetic noise on synchronization are systematically quantified. The results indicate electrically modulatable robotic arm dynamics, with the coupled systems achieving autonomous rapid synchronization. Despite noise-induced desynchronization, inter-system errors rapidly decay and stabilize within bounded limits, confirming robust stability.
|
Received: 03 January 2025
Revised: 20 February 2025
Accepted manuscript online: 20 March 2025
|
|
PACS:
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
| |
05.45.Xt
|
(Synchronization; coupled oscillators)
|
| |
52.35.Mw
|
(Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))
|
| |
52.55.Dy
|
(General theory and basic studies of plasma lifetime, particle and heat loss, energy balance, field structure, etc.)
|
|
| Fund: Project supported by the National Key R&D Program of China (Grant No. 2023YFD2000601-02). |
Corresponding Authors:
Xufeng Wang
E-mail: wxfwyq@126.com
|
Cite this article:
Guoping Sun(孙国平), Mingxin Xu(许明鑫), Guoqiang Jin(金国强), and Xufeng Wang(王旭峰) Synchronous dynamics of robotic arms driven by Chua circuits 2025 Chin. Phys. B 34 060501
|
[1] Murphy T E, Cohen A B, Ravoori B, Schmitt K R B, Setty A V, Sorrentino F,Williams C R S, Ott E and Roy R 2010 Philos. Trans. R. Soc. A 368 343 [2] Jensen R V 2002 Am. J. Phys. 70 607 [3] Strogatz S H, Mirollo R E and Matthews P C 1992 Phys. Rev. Lett. 68 2730 [4] Maurer H and Pesch H J 1994 SIAM J. Control Optim. 32 1542 [5] Lee H J, Park J B and Chen G 2001 IEEE Trans. Fuzzy Syst. 9 369 [6] Mou J, Sun K, Ruan J and He S 2016 Nonlinear Dyn. 86 1735 [7] Razzaghi P, Khatib E A and Hurmuzlu Y 2019 Nonlinear Dyn. 97 161 [8] Hu Y, Chen G, Li Z and Knoll A 2023 IEEE Trans. Cybern. 53 4002 [9] Sato M, Hubbard B E and Sievers A J 2006 Rev. Mod. Phys. 78 137 [10] Chamley-Campbell J, Campbell G R and Ross R 1979 Physiol. Rev. 59 1 [11] Gerthoffer W T 2007 Circ. Res. 100 607 [12] Blau H M and Webster C 1981 Proc. Natl. Acad. Sci. USA 78 5623 [13] Gomes I, Korneta W, Stavrinides S G, Picos R and Chua L O 2023 Chaos Solitons Fractals 166 112927 [14] Yang F, Ma J and An X 2022 Chaos Solitons Fractals 162 112450 [15] Bhatt V, Ranjan A and Joshi M 2024 Circ. Syst. Signal Process. 43 2051 [16] Li Z and Chen K 2023 Chaos Solitons Fractals 175 114017 [17] Liu Z, Ma J, Zhang G and Zhang Y 2019 Appl. Math. Comput. 360 94 [18] Südhof T 2021 J. Cell Biol. 220 e202103052 [19] Südhof T C 2018 Neuron 100 276 [20] Cannas B and Cincotti S 2002 Int. J. Circuit Theory Appl. 30 625 [21] Zhang X,Wu F, Ma J, Hobiny A, Alzahrani F and Ren G 2020 AEU-Int. J. Electron. Commun. 115 153050 [22] Chen S, Zhang T, Tappertzhofen S, Yang Y and Valov I 2023 Adv. Mater. 35 2301924 [23] Zhang L, An X and Zhang J 2023 Phys. Scr. 98 045203 [24] Sun G, Yang F, Ren G and Wang C 2023 Chaos Solitons Fractals 169 113230 [25] Zhou Q and Wei D Q 2021 Nonlinear Dyn. 105 753 [26] Wang C, Sun G, Yang F and Ma J 2022 AEU-Int. J. Electron. Commun. 153 154280 [27] Chua L O 1994 Circuit Theory Appl. 22 279 [28] Fortuna L, Frasca M and Xibilia M G 2009 Chua’s Circuit Implementations (World Scientific) [29] Simon E and Bronner G 1967 IEEE Trans. Nucl. Sci. 14 33 [30] Frackowiak E and Béguin F 2001 Carbon 39 937 [31] Fischer A, Koprucki T, Gärtner K, Tietze M L, Brückner J, Lüssem B, Leo K, Glitzky A and Scholz R 2014 Adv. Funct. Mater. 24 3367 [32] Zhou P, Zhang X, Hu X and Ren G 2022 Nonlinear Dyn. 110 1879 [33] Mbeunga N K, Nana B andWoafo P 2021 Chaos Solitons Fractals 153 111484 [34] Chedjou J C, Woafo P and Domngang S 2000 J. Vib. Acoust. 123 170 [35] Sanger J W, Chowrashi P, Shaner N C, Spalthoff S, Wang J, Freeman N L and Sanger J M 2002 Clin. Orthop. Relat. Res. 403 S153 [36] Gregorio C C and Antin P B 2000 Trends Cell Biol. 10 355 [37] Au Y 2004 Cell. Mol. Life Sci. 61 3016 [38] Sackmann E 2015 Biochim. Biophys. Acta 1853 3132 [39] Kitio Kwuimy C A and Woafo P 2008 Nonlinear Dyn. 53 201 [40] Yamapi R and Aziz-AlaouiMA 2007 Commun. Nonlinear Sci. 12 1534 [41] Tacha O I, Volos Ch K, Kyprianidis I M, Stouboulos I N, Vaidyanathan S and Pham V T 2016 Appl. Math. Comput. 276 200 [42] Wang B, Lv M, Zhang X and Ma J 2024 Phys. Scr. 99 055225 [43] Yang F, Guo Q and Ma J 2024 Cogn. Neurodyn. 18 673 [44] Njitacke Z T, Awrejcewicz J, Ramakrishnan B, Rajagopal K and Kengne J 2022 Nonlinear Dyn. 107 2867 [45] Li R, Dong E, Tong J and Du S 2022 Chaos 32 013127 [46] Wan J, Wu F, Ma J and Wang W 2024 Chin. Phys. B 33 050504 [47] Ren G, Xu Y and Wang C 2017 Nonlinear Dyn. 88 893 [48] Xie Y, Yao Z and Ma J 2022 Front. Inform. Technol. Electron. Eng. 23 1407 [49] Yamakou M E and Tran T D 2022 Nonlinear Dyn. 107 2847 [50] Li Y, Niu B, Zong G, Zhao J and Zhao X 2022 Int. J. Syst. Sci. 53 199 [51] Zhao Y, Zhang H, Chen Z, Wang H and Zhao X 2022 Int. J. Syst. Sci. 53 1545 [52] Dong Z, Wang X, Zhang X, et al. 2023 Nonlinear Anal. Hybrid Syst. 47 101291 [53] Qian J, Chen L and Sun J Q 2024 Eng. Struct. 304 117677 [54] Tripura T and Chakraborty S 2023 Mech. Syst. Signal Process. 187 109939 [55] Pancaldi F, Dibiase L and Cocconcelli M 2023 Mech. Syst. Signal Process. 188 109975 [56] Xu Y, Jia Y, Ma J, Alsaedi A and Ahmad B 2017 Chaos Solitons Fractals 104 435 [57] Lv M, Ma J, Yao Y and Alzahrani F 2019 Sci. China Technol. Sci. 62 448 [58] Xiao W, Min F, Li H and Shi W 2024 TCAS-I 71 5618 [59] Li H and Min F 2024 IEEE Trans. Industr. Inform. 20 10259 [60] Fattorini L, Tirabasso A and Lunghi A 2017 Int. J. Ind. Ergonom. 62 13 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|