Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 070502    DOI: 10.1088/1674-1056/adcded
GENERAL Prev   Next  

Optimal synchronization of higher-order Kuramoto model on hypergraphs

Chong-Yang Wang(王重阳)1,2,3,†, Bi-Yun Ji(季碧芸)1,2, and Linyuan Lü(吕琳媛)4,‡1
1 Yangtze Delta Region Institute of University of Electronic Science and Technology of China, Huzhou 313000, China;
2 Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China;
3 Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, and Key Laboratory of Quantum Theory and Applications of Ministry of Education, Lanzhou University, Lanzhou 730000, China;
4 School of Cyber Science and Technology, University of Science and Technology of China, Hefei 230026, China
Abstract  Complex networks play a crucial role in the study of collective behavior, encompassing the analysis of dynamical properties and network topology. In real-world systems, higher-order interactions among multiple entities are widespread and significantly influence collective dynamics. Here, we extend the synchronization alignment function framework to hypergraphs of arbitrary order by leveraging the multi-order Laplacian matrix to encode higher-order interactions. Our findings reveal that the upper bound of synchronous behavior is determined by the maximum eigenvalue of the multi-order Laplacian matrix. Furthermore, we decompose the contribution of each hyperedge to this eigenvalue and utilize it as a basis for designing an eigenvalue-based topology modification algorithm. This algorithm effectively enhances the upper bound of synchronous behavior without altering the total number of higher-order interactions. Our study provides new insights into dynamical optimization and topology tuning in hypergraphs, advancing the understanding of the interplay between higher-order interactions and collective dynamics.
Keywords:  synchronization optimization      hypergraph      complex network  
Received:  10 February 2025      Revised:  08 April 2025      Accepted manuscript online:  17 April 2025
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  64.60.aq (Networks)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12247153, T2293771, and 12247101), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LTGY24A050002), the Sichuan Science and Technology Program (Grant Nos. 2024NSFSC1364 and 2023NSFSC1919), the Project of Huzhou Science and Technology Bureau (Grant No. 2022YZ29), the UESTCYDRI research start-up (Grant No. U03210066), and the New Cornerstone Science Foundation through the Xplorer Prize.
Corresponding Authors:  Chong-Yang Wang, Linyuan Lü     E-mail:  wangchongyang@csj.uestc.edu.cn;linyuan.lv@uestc.edu.cn

Cite this article: 

Chong-Yang Wang(王重阳), Bi-Yun Ji(季碧芸), and Linyuan Lü(吕琳媛) Optimal synchronization of higher-order Kuramoto model on hypergraphs 2025 Chin. Phys. B 34 070502

[1] Strogatz S H 2003 Sync: The Emerging Science of Spontaneous Order (New York, Hyperion)
[2] Fell J and Axmacher N 2011 Nat. Rev. Neurosci. 12 105
[3] Wang C Y, Zhang J Q, Wu Z X and Guan J Y 2021 Phys. Rev. E 103 022312
[4] Pluchino A, Latora V and Rapisarda A 2005 Int. J. Mod. Phys. C 16 515
[5] Shahal S, Wurzberg A, Sibony I, Duadi H, Shniderman E, Weymouth D, Davidson N and Fridman M 2020 Nat. Commun. 11 3854
[6] Acebrón J A, Bonilla L L, Pérez Vicente C J, Ritort F and Spigler R 2005 Rev. Mod. Phys. 77 137
[7] Rohden M, Sorge A, Timme M and Witthaut D 2012 Phys. Rev. Lett. 109 064101
[8] Skardal P S and Arenas A 2015 Sci. Adv. 1 e1500339
[9] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[10] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175
[11] Newman M E J 2018 Networks: An Introduction, 2nd ed (New York: Oxford University Press)
[12] Arenas A, Díaz-Guilera A, Kurths J, Moreno Y and Zhou C 2008 Phys. Rep. 469 93
[13] Rodrigues F A, Peron T K D, Ji P and Kurths J 2016 Phys. Rep. 610 1
[14] Wu X,Wu X,Wang C Y, Mao B, Lu J, Lü J, Zhang Y C and Lü L 2024 Phys. Rep. 1060 1
[15] Duolan, Xiang L and Chen G 2023 Chin. Phys. B 32 060502
[16] Benson A R, Gleich D F and Leskovec J 2016 Science 353 163
[17] Battiston F, Amico E, Barrat A, Bianconi G, Ferraz De Arruda G, Franceschiello B, Iacopini I, Kéfi S, Latora V, Moreno Y, Murray M M, Peixoto T P, Vaccarino F and Petri G 2021 Nat. Phys. 17 1093
[18] Zheng H X, Miao S Y and Gu C G 2024 Chin. Phys. B 33 058401
[19] Salnikov V, Cassese D and Lambiotte R 2019 Eur. J. Phys. 40 014001
[20] Battiston F, Cencetti G, Iacopini I, Latora V, Lucas M, Patania A, Young J G and Petri G 2020 Phys. Rep. 874 1
[21] Bianconi G 2021 Higher-Order Networks (Cambridge: Cambridge University Press)
[22] Liu B, Zeng Y J, Yang RMand Lü L Y 2024 Acta Phys. Sin. 73 128901 (in Chinese)
[23] Tanaka T and Aoyagi T 2011 Phys. Rev. Lett. 106 224101
[24] Skardal P S and Arenas A 2019 Phys. Rev. Lett. 122 248301
[25] Berner R, Vock S, Schöll E and Yanchuk S 2021 Phys. Rev. Lett. 126 028301
[26] Kovalenko K, Dai X, Alfaro-Bittner K, Raigorodskii A M, Perc M and Boccaletti S 2021 Phys. Rev. Lett. 127 258301
[27] Zhang Y, Skardal P S, Battiston F, Petri G and Lucas M 2024 Sci. Adv. 10 eado8049
[28] Wu Y, Yu H, Zheng Z and Xu C 2024 Chin. Phys. B 33 040504
[29] Skardal P S and Arenas A 2020 Commun. Phys. 3 218
[30] Lucas M, Cencetti G and Battiston F 2020 Phys. Rev. Res. 2 033410
[31] Kundu S and Ghosh D 2022 Phys. Rev. E 105 L042202
[32] Ji B Y, Wang C Y and Lü L 2025 New J. Phys. 27 043012
[33] Zheng Z 2019 Emergence dynamics in complex systems: From synchronization to collective transport (Beijing: Science Publishing House) (in Chinese)
[34] Skardal P S, Taylor D and Sun J 2014 Phys. Rev. Lett. 113 144101
[35] Skardal P S, Arola-Fernández L, Taylor D and Arenas A 2021 Phys. Rev. Res. 3 043193
[36] Wang X F and Chen G 2002 IEEE Trans. Circuits Syst. I 49 54
[37] Restrepo J G, Ott E and Hunt B R 2005 Phys. Rev. E 71 036151
[38] Gómez-Gardeñes J and Moreno Y 2006 Phys. Rev. E 73 056124
[39] Gómez-Gardeñes J and Moreno Y 2011 Phys. Rev. Lett. 106 128701
[40] Hart J D, Zhang Y, Roy R and Motter A E 2019 Phys. Rev. Lett. 122 058301
[41] Chen W, Gao J, Lan Y and Xiao J 2022 Phys. Rev. E 105 044302
[42] Hossein Ghorban S, Hesaam B and Sarbazi-Azad H 2022 J. Stat. Mech. 2022 113404
[43] Tang Y, Shi D and Lü L 2022 Commun. Phys. 5 96
[44] Kuramoto Y 1984 Chemical Oscillations, Waves, and Turbulence (Berlin, Heidelberg: Springer)
[45] Wang H, Ma C, Chen H S, Lai Y C and Zhang H F 2022 Nat. Commun. 13 3043
[46] Das K C and Bapat R 2005 Linear Algebra Appl. 409 153
[47] Gambuzza L V, Di Patti F, Gallo L, Lepri S, Romance M, Criado R, Frasca M, Latora V and Boccaletti S 2021 Nat. Commun. 12 1255
[1] Global dynamics and optimal control of SEIQR epidemic model on heterogeneous complex networks
Xiongding Liu(柳雄顶), Xiaodan Zhao(赵晓丹), Xiaojing Zhong(钟晓静), and Wu Wei(魏武). Chin. Phys. B, 2025, 34(6): 060203.
[2] SFFSlib: A Python library for optimizing attribute layouts from micro to macro scales in network visualization
Ke-Chao Zhang(张可超), Sheng-Yue Jiang(蒋升跃), and Jing Xiao(肖婧). Chin. Phys. B, 2025, 34(5): 058903.
[3] Associated network family of the unified piecewise linear chaotic family and their relevance
Haoying Niu(牛浩瀛) and Jie Liu(刘杰). Chin. Phys. B, 2025, 34(4): 040503.
[4] Identifying important nodes of hypergraph: An improved PageRank algorithm
Yu-Hao Piao(朴宇豪), Jun-Yi Wang(王俊义), and Ke-Zan Li(李科赞). Chin. Phys. B, 2025, 34(4): 048902.
[5] Finite time hybrid synchronization of heterogeneous duplex complex networks via time-varying intermittent control
Cheng-Jun Xie(解成俊) and Xiang-Qing Lu(卢向清). Chin. Phys. B, 2025, 34(4): 040601.
[6] Characteristics of complex network of heatwaves over China
Xuemin Shen(沈雪敏), Xiaodong Hu(胡晓东), Aixia Feng(冯爱霞), Qiguang Wang(王启光), and Changgui Gu(顾长贵). Chin. Phys. B, 2025, 34(3): 038903.
[7] Explosive information spreading in higher-order networks: Effect of social reinforcement
Yu Zhou(周宇), Yingpeng Liu(刘英鹏), Liang Yuan(袁亮), Youhao Zhuo(卓友濠), Kesheng Xu(徐克生), Jiao Wu(吴娇), and Muhua Zheng(郑木华). Chin. Phys. B, 2025, 34(3): 038704.
[8] GPIC: A GPU-based parallel independent cascade algorithm in complex networks
Chang Su(苏畅), Xu Na(那旭), Fang Zhou(周方), and Linyuan Lü(吕琳媛). Chin. Phys. B, 2025, 34(3): 030204.
[9] Node ranking based on graph curvature and PageRank
Hongbo Qu(曲鸿博), Yu-Rong Song(宋玉蓉), Ruqi Li(李汝琦), Min Li(李敏), and Guo-Ping Jiang(蒋国平). Chin. Phys. B, 2025, 34(2): 028901.
[10] Detecting the core of a network by the centralities of the nodes
Peijie Ma(马佩杰), Xuezao Ren(任学藻), Junfang Zhu(朱军芳), and Yanqun Jiang(蒋艳群). Chin. Phys. B, 2024, 33(8): 088903.
[11] Dynamic analysis of major public health emergency transmission considering the dual-layer coupling of community-resident complex networks
Peng Yang(杨鹏), Ruguo Fan(范如国), Yibo Wang(王奕博), and Yingqing Zhang(张应青). Chin. Phys. B, 2024, 33(7): 070206.
[12] Effects of individual heterogeneity on social contagions
Fu-Zhong Nian(年福忠) and Yu Yang(杨宇). Chin. Phys. B, 2024, 33(5): 058705.
[13] Identifying influential spreaders in complex networks based on density entropy and community structure
Zhan Su(苏湛), Lei Chen(陈磊), Jun Ai(艾均), Yu-Yu Zheng(郑雨语), and Na Bie(别娜). Chin. Phys. B, 2024, 33(5): 058901.
[14] A novel complex-high-order graph convolutional network paradigm: ChyGCN
He-Xiang Zheng(郑和翔), Shu-Yu Miao(苗书宇), and Chang-Gui Gu(顾长贵). Chin. Phys. B, 2024, 33(5): 058401.
[15] Prediction of collapse process and tipping points for mutualistic and competitive networks with k-core method
Dongli Duan(段东立), Feifei Bi(毕菲菲), Sifan Li(李思凡), Chengxing Wu(吴成星), Changchun Lv(吕长春), and Zhiqiang Cai(蔡志强). Chin. Phys. B, 2024, 33(5): 050201.
No Suggested Reading articles found!