1 National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China; 2 Key Laboratory of Time Reference and Applications, Chinese Academy of Sciences, Xi'an 710600, China; 3 State Key Laboratory of Photonics and Communications, Institute of Quantum Electronics, School of Electronics, Peking University, Beijing 100871, China; 4 University of Chinese Academy of Sciences, Beijing 100049, China; 5 School of Integrated Circuits, Peking University, Beijing 100871, China; 6 National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Beijing 100871, China; 7 Hefei National Laboratory, Hefei 230088, China
Abstract The phenomenon that a clock at a higher gravitational potential ticks faster than one at a lower potential, also known as gravitational redshift, is one of the classical tests of Einstein's theory of general relativity. Owing to their ultra-high accuracy and stability, state-of-the-art optical lattice clocks have enabled resolving the gravitational redshift with a millimeter-scale height difference. Further reducing the vertical inter-clock separation down to the sub-millimeter level and especially shortening the required measurement time may be achieved by employing spin squeezing. Here, we theoretically investigate the spin-squeezing-enhanced differential frequency comparison between two optical clocks within a lattice-trapped cloud of Yb atoms. The numerical results illustrate that for a sample of atoms, the atomic-collision-limited resolution of the vertical separation between two clocks can reach 0.48 mm, corresponding to a fractional gravitational redshift at the level. In addition, the required averaging time may be reduced to less than one hundredth of that of conventional clocks with independent atoms. Our work opens a door to the future spin-squeezing-enhanced test of general relativity.
Fund: in Basic Research (Grant No. YSBR-085), the National Time Service Center (Grant No. E239SC1101), Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0303200), and China Postdoctoral Science Foundation (Grant No. BX2021020).
Corresponding Authors:
Tiantian Shi
E-mail: tts@pku.edu.cn
Cite this article:
Deshui Yu(于得水), Jia Zhang(张佳), Shougang Zhang(张首刚), Tiantian Shi(史田田), and Jingbiao Chen(陈景标) Resolving gravitational redshift with sub-millimeter height differences using spin-squeezed optical clocks 2025 Chin. Phys. B 34 054208
[1] Pound R V and Rebka G A 1960 Phys. Rev. Lett. 4 337 [2] Pound R V and Snider J L 1964 Phys. Rev. Lett. 13 539 [3] Pound R V and Snider J L 1965 Phys. Rev. Lett. 140 BB788 [4] Vessot R F C, Levine M W, Mattison E M, Blomberg E L, Hoffman T E, Nystrom G U, Farrel B F, Decher R, Eby P B, Baugher C R, Watts J W, Teuber D L and Wills F D 1980 Phys. Rev. Lett. 45 2081 [5] Smarr L L, Vessot R F C, Lundquist C A, Decher R and Piran T 1983 Gen. Relat. Gravit. 15 129 [6] Delva P, Puchades N, Schönemann E, Dilssner F, Courde C, Bertone S, Gonzalez F, Hees A, Le Poncin-Lafitte Ch, Meynadier F, Prieto- Cerdeira R, Sohet B, Ventura-Traveset J and Wolf P 2018 Phys. Rev. Lett. 121 231101 [7] Takano T, Takamoto M, Ushijima I, Ohmae N, Akatsuka T, Yamaguchi A, Kuroishi Y, Munekane H, Miyahara B and Katori H 2016 Nat. Photon. 10 662 [8] McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H and Ludlow A D 2018 Nature 564 87 [9] Takamoto M, Ushijima I, Ohmae N, Yahagi T, Kokado K, Shinkai H and Katori H 2020 Nat. Photon. 14 411 [10] Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71 [11] Ushijima I, Takamoto M and Katori H 2018 Phys. Rev. Lett. 121 263202 [12] Kim K, Aeppli A, Bothwell T and Ye J 2023 Phys. Rev. Lett. 130 113203 [13] Ushijima I, Takamoto M, Das M, Ohkubo T and Katori H 2015 Nat. Photon. 9 185 [14] Aeppli A, Chu A, Bothwell T, Kennedy C J, Kedar D, He, P, Rey A M and Ye J 2022 Sci. Adv. 8 eadc9242 [15] Bothwell T, Kennedy C J, Aeppli A, Kedar D, Robinson J M, Oelker E, Staron A and Ye J 2022 Nature 602 420 [16] Santarelli G, Audoin C, Makdissi A, Lauren P, Dick G J and Clairon A 1998 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 887 [17] Takamoto M, Takano T and Katori H 2011 Nat. Photon. 5 288 [18] Itano W M, Bergquist J C, Bollinger J J, Gilligan J M, Heinzen D J, Moore F L, Raizen M G and Wineland D J 1993 Phys. Rev. A 47 3554 [19] Santarelli G, Laurent Ph, Lemonde P, Clairon A, Mann A G, Chang S, Luiten A N and Salomon C 1999 Phys. Rev. Lett. 82 4619 [20] Wineland D J, Bollinger J J, Itano W M, Moore F L and Heinzen D J 1992 Phys. Rev. A 46 R6797 [21] Kitagawa M and Ueda M 1993 Phys. Rev. A 47 5138 [22] Ma J, Wang X, Sun C P and Nori F 2011 Phys. Rep. 509 89 [23] Pedrozo-Peñafiel E, Colombo S, Shu C, Adiyatullin A F, Li Z, Mendez E, Braverman B, Kawasaki A, Akamatsu D, Xiao Y and Vuletić V 2020 Nature 588 414 [24] Schleier-Smith M H, Leroux I D and Vuletić V 2010 Phys. Rev. A 81 021804 [25] Robinson J M, Miklos M, Tso Y M, Kennedy C J, Bothwell T, Kedar D, Thompso J K and Ye J 2024 Nat. Phys. 20 208 [26] Chen J and Yu D 2024 Sci. Bull. 69 1359 [27] Lemonde P and Wolf P 2005 Phys. Rev. A 72 033409 [28] Yu D 2012 Phys. Rev. A 85 032705 [29] Marti G E, Hutson R B, Goban A, Campbell S L, Poli N and Ye J 2018 Phys. Rev. Lett. 120 103201 [30] Yu D, Chen J and Zhang S 2023 Phys. Rev. A 107 043120 [31] Dörscher S, Schwarz R, Al-Masoudi A, Falke S, Sterr U and Lisdat C 2018 Phys. Rev. A 97 063419 [32] Wang C, Yao Y, Shi H, Yu H, Ma L and Jiang Y 2024 Chin. Phys. B 33 030601 [33] Porsev S G, Derevianko A and Fortson E N 2004 Phys. Rev. A 69 021403 [34] Hutson R B, Goban A, Marti G E, Sonderhouse L, Sanner C and Ye J 2019 Phys. Rev. Lett. 123 123401 [35] Yu D, Zhang J, Xia T, Zhang S, Shi T and Chen J 2024 Phys. Rev. A 110 013102 [36] Zhang X, Beloy K, Hassan Y S, McGrew W F, Chen C C, Siegel J L, Grogan T and Ludlow A D 2022 Phys. Rev. Lett. 129 113202 [37] Siegel J L, McGrew W F, Hassan Y S, Chen C C, Beloy K, Grogan T, Zhang X and Ludlow A D 2024 Phys. Rev. Lett. 132 133201 [38] Lemke N D, von Stecher J, Sherman J A, Rey A M, Oates C W and Ludlow A D 2011 Phys. Rev. Lett. 107 103902 [39] Chu A, Martínez-Lahuerta V J, Miklos M, Kim K, Zoller P, Hammerer K, Ye J and Rey A M 2025 Phys. Rev. Lett. 134 093201 [40] Ovsiannikov V D, Marmo S I, Palchikov V G and Katori H 2016 Phys. Rev. A 93 043420 [41] Nemitz N A, Jørgensen A, Yanagimoto R, Bregolin F and Katori H 2019 Phys. Rev. A 99 033424 [42] Sherman J A, Lemke N D, Hinkley N, Pizzocaro M, Fox R W, Ludlow A D and Oates C W 2012 Phys. Rev. Lett. 108 153002 [43] Braverman B, Kawasaki A and Vuletić V 2018 New J. Phys. 20 103019 [44] Caprotti A, Barbiero M, TaralloMG, GenoniMG and Bertaina G 2024 Quantum Sci. Technol. 9 035032
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.