Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 054208    DOI: 10.1088/1674-1056/adca1d
RAPID COMMUNICATION Prev   Next  

Resolving gravitational redshift with sub-millimeter height differences using spin-squeezed optical clocks

Deshui Yu(于得水)1,2,†, Jia Zhang(张佳)3,†, Shougang Zhang(张首刚)1,2,4, Tiantian Shi(史田田)5,6,‡, and Jingbiao Chen(陈景标)3,7
1 National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China;
2 Key Laboratory of Time Reference and Applications, Chinese Academy of Sciences, Xi'an 710600, China;
3 State Key Laboratory of Photonics and Communications, Institute of Quantum Electronics, School of Electronics, Peking University, Beijing 100871, China;
4 University of Chinese Academy of Sciences, Beijing 100049, China;
5 School of Integrated Circuits, Peking University, Beijing 100871, China;
6 National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Beijing 100871, China;
7 Hefei National Laboratory, Hefei 230088, China
Abstract  The phenomenon that a clock at a higher gravitational potential ticks faster than one at a lower potential, also known as gravitational redshift, is one of the classical tests of Einstein's theory of general relativity. Owing to their ultra-high accuracy and stability, state-of-the-art optical lattice clocks have enabled resolving the gravitational redshift with a millimeter-scale height difference. Further reducing the vertical inter-clock separation down to the sub-millimeter level and especially shortening the required measurement time may be achieved by employing spin squeezing. Here, we theoretically investigate the spin-squeezing-enhanced differential frequency comparison between two optical clocks within a lattice-trapped cloud of 171Yb atoms. The numerical results illustrate that for a sample of 104 atoms, the atomic-collision-limited resolution of the vertical separation between two clocks can reach 0.48 mm, corresponding to a fractional gravitational redshift at the 1020 level. In addition, the required averaging time may be reduced to less than one hundredth of that of conventional clocks with independent atoms. Our work opens a door to the future spin-squeezing-enhanced test of general relativity.
Keywords:  optical lattice clock      quantum projection noise      spin squeezing      gravitational redshift  
Received:  05 March 2025      Revised:  03 April 2025      Accepted manuscript online:  08 April 2025
PACS:  42.50.-p (Quantum optics)  
  42.62.Fi (Laser spectroscopy)  
  29.30.-h (Spectrometers and spectroscopic techniques)  
Fund: in Basic Research (Grant No. YSBR-085), the National Time Service Center (Grant No. E239SC1101), Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0303200), and China Postdoctoral Science Foundation (Grant No. BX2021020).
Corresponding Authors:  Tiantian Shi     E-mail:  tts@pku.edu.cn

Cite this article: 

Deshui Yu(于得水), Jia Zhang(张佳), Shougang Zhang(张首刚), Tiantian Shi(史田田), and Jingbiao Chen(陈景标) Resolving gravitational redshift with sub-millimeter height differences using spin-squeezed optical clocks 2025 Chin. Phys. B 34 054208

[1] Pound R V and Rebka G A 1960 Phys. Rev. Lett. 4 337
[2] Pound R V and Snider J L 1964 Phys. Rev. Lett. 13 539
[3] Pound R V and Snider J L 1965 Phys. Rev. Lett. 140 BB788
[4] Vessot R F C, Levine M W, Mattison E M, Blomberg E L, Hoffman T E, Nystrom G U, Farrel B F, Decher R, Eby P B, Baugher C R, Watts J W, Teuber D L and Wills F D 1980 Phys. Rev. Lett. 45 2081
[5] Smarr L L, Vessot R F C, Lundquist C A, Decher R and Piran T 1983 Gen. Relat. Gravit. 15 129
[6] Delva P, Puchades N, Schönemann E, Dilssner F, Courde C, Bertone S, Gonzalez F, Hees A, Le Poncin-Lafitte Ch, Meynadier F, Prieto- Cerdeira R, Sohet B, Ventura-Traveset J and Wolf P 2018 Phys. Rev. Lett. 121 231101
[7] Takano T, Takamoto M, Ushijima I, Ohmae N, Akatsuka T, Yamaguchi A, Kuroishi Y, Munekane H, Miyahara B and Katori H 2016 Nat. Photon. 10 662
[8] McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H and Ludlow A D 2018 Nature 564 87
[9] Takamoto M, Ushijima I, Ohmae N, Yahagi T, Kokado K, Shinkai H and Katori H 2020 Nat. Photon. 14 411
[10] Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71
[11] Ushijima I, Takamoto M and Katori H 2018 Phys. Rev. Lett. 121 263202
[12] Kim K, Aeppli A, Bothwell T and Ye J 2023 Phys. Rev. Lett. 130 113203
[13] Ushijima I, Takamoto M, Das M, Ohkubo T and Katori H 2015 Nat. Photon. 9 185
[14] Aeppli A, Chu A, Bothwell T, Kennedy C J, Kedar D, He, P, Rey A M and Ye J 2022 Sci. Adv. 8 eadc9242
[15] Bothwell T, Kennedy C J, Aeppli A, Kedar D, Robinson J M, Oelker E, Staron A and Ye J 2022 Nature 602 420
[16] Santarelli G, Audoin C, Makdissi A, Lauren P, Dick G J and Clairon A 1998 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 887
[17] Takamoto M, Takano T and Katori H 2011 Nat. Photon. 5 288
[18] Itano W M, Bergquist J C, Bollinger J J, Gilligan J M, Heinzen D J, Moore F L, Raizen M G and Wineland D J 1993 Phys. Rev. A 47 3554
[19] Santarelli G, Laurent Ph, Lemonde P, Clairon A, Mann A G, Chang S, Luiten A N and Salomon C 1999 Phys. Rev. Lett. 82 4619
[20] Wineland D J, Bollinger J J, Itano W M, Moore F L and Heinzen D J 1992 Phys. Rev. A 46 R6797
[21] Kitagawa M and Ueda M 1993 Phys. Rev. A 47 5138
[22] Ma J, Wang X, Sun C P and Nori F 2011 Phys. Rep. 509 89
[23] Pedrozo-Peñafiel E, Colombo S, Shu C, Adiyatullin A F, Li Z, Mendez E, Braverman B, Kawasaki A, Akamatsu D, Xiao Y and Vuletić V 2020 Nature 588 414
[24] Schleier-Smith M H, Leroux I D and Vuletić V 2010 Phys. Rev. A 81 021804
[25] Robinson J M, Miklos M, Tso Y M, Kennedy C J, Bothwell T, Kedar D, Thompso J K and Ye J 2024 Nat. Phys. 20 208
[26] Chen J and Yu D 2024 Sci. Bull. 69 1359
[27] Lemonde P and Wolf P 2005 Phys. Rev. A 72 033409
[28] Yu D 2012 Phys. Rev. A 85 032705
[29] Marti G E, Hutson R B, Goban A, Campbell S L, Poli N and Ye J 2018 Phys. Rev. Lett. 120 103201
[30] Yu D, Chen J and Zhang S 2023 Phys. Rev. A 107 043120
[31] Dörscher S, Schwarz R, Al-Masoudi A, Falke S, Sterr U and Lisdat C 2018 Phys. Rev. A 97 063419
[32] Wang C, Yao Y, Shi H, Yu H, Ma L and Jiang Y 2024 Chin. Phys. B 33 030601
[33] Porsev S G, Derevianko A and Fortson E N 2004 Phys. Rev. A 69 021403
[34] Hutson R B, Goban A, Marti G E, Sonderhouse L, Sanner C and Ye J 2019 Phys. Rev. Lett. 123 123401
[35] Yu D, Zhang J, Xia T, Zhang S, Shi T and Chen J 2024 Phys. Rev. A 110 013102
[36] Zhang X, Beloy K, Hassan Y S, McGrew W F, Chen C C, Siegel J L, Grogan T and Ludlow A D 2022 Phys. Rev. Lett. 129 113202
[37] Siegel J L, McGrew W F, Hassan Y S, Chen C C, Beloy K, Grogan T, Zhang X and Ludlow A D 2024 Phys. Rev. Lett. 132 133201
[38] Lemke N D, von Stecher J, Sherman J A, Rey A M, Oates C W and Ludlow A D 2011 Phys. Rev. Lett. 107 103902
[39] Chu A, Martínez-Lahuerta V J, Miklos M, Kim K, Zoller P, Hammerer K, Ye J and Rey A M 2025 Phys. Rev. Lett. 134 093201
[40] Ovsiannikov V D, Marmo S I, Palchikov V G and Katori H 2016 Phys. Rev. A 93 043420
[41] Nemitz N A, Jørgensen A, Yanagimoto R, Bregolin F and Katori H 2019 Phys. Rev. A 99 033424
[42] Sherman J A, Lemke N D, Hinkley N, Pizzocaro M, Fox R W, Ludlow A D and Oates C W 2012 Phys. Rev. Lett. 108 153002
[43] Braverman B, Kawasaki A and Vuletić V 2018 New J. Phys. 20 103019
[44] Caprotti A, Barbiero M, TaralloMG, GenoniMG and Bertaina G 2024 Quantum Sci. Technol. 9 035032
[1] Nonlinear time-reversal interferometry with arbitrary quadratic collective-spin interaction
Zhiyao Hu(胡知遥), Qixian Li(李其贤), Xuanchen Zhang(张轩晨), He-Bin Zhang(张贺宾), Long-Gang Huang(黄龙刚), and Yong-Chun Liu(刘永椿). Chin. Phys. B, 2024, 33(8): 080601.
[2] A proposal for detecting weak electromagnetic waves around 2.6 μm wavelength with Sr optical clock
Ruo-Shui Han(韩弱水), Wei Wang(王伟), and Tao Wang(汪涛). Chin. Phys. B, 2024, 33(4): 043201.
[3] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[4] Theoretical calculations on Landé g-factors and quadratic Zeeman shift coefficients of nsnp 3P0o clock states in Mg and Cd optical lattice clocks
Benquan Lu(卢本全) and Hong Chang(常宏). Chin. Phys. B, 2023, 32(1): 013101.
[5] Theoretical calculation of the quadratic Zeeman shift coefficient of the 3P0o clock state for strontium optical lattice clock
Benquan Lu(卢本全), Xiaotong Lu(卢晓同), Jiguang Li(李冀光), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(4): 043101.
[6] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[7] A transportable optical lattice clock at the National Time Service Center
De-Huan Kong(孔德欢), Zhi-Hui Wang(王志辉), Feng Guo(郭峰), Qiang Zhang(张强), Xiao-Tong Lu(卢晓同), Ye-Bing Wang(王叶兵), Hong Chang(常宏). Chin. Phys. B, 2020, 29(7): 070602.
[8] Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach
Xuping Shao(邵旭萍). Chin. Phys. B, 2020, 29(12): 124206.
[9] Spin squeezing in Dicke-class of states with non-orthogonal spinors
K S Akhilesh, K S Mallesh, Sudha, Praveen G Hegde. Chin. Phys. B, 2019, 28(6): 060302.
[10] Tunable two-axis spin model and spin squeezing in two cavities
Lixian Yu(俞立先), Caifeng Li(李彩凤), Jingtao Fan(樊景涛), Gang Chen(陈刚), Tian-Cai Zhang(张天才), Suotang Jia(贾锁堂). Chin. Phys. B, 2016, 25(5): 050301.
[11] Quantum Fisher information and spin squeezing in one-axis twisting model
Zhong Wei (钟伟), Liu Jing (刘京), Ma Jian (马健), Wang Xiao-Guang (王晓光). Chin. Phys. B, 2014, 23(6): 060302.
[12] Clock-transition spectrum of 171Yb atoms in a one-dimensional optical lattice
Chen Ning (陈宁), Zhou Min (周敏), Chen Hai-Qin (陈海琴), Fang Su (方苏), Huang Liang-Yu (黄良玉), Zhang Xiao-Hang (张晓航), Gao Qi (高琪), Jiang Yan-Yi (蒋燕义), Bi Zhi-Yi (毕志毅), Ma Long-Sheng (马龙生), Xu Xin-Ye (徐信业). Chin. Phys. B, 2013, 22(9): 090601.
[13] Improved frequency standard via weighted graph states
Xue Peng (薛鹏). Chin. Phys. B, 2012, 21(10): 100306.
No Suggested Reading articles found!