Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 020309    DOI: 10.1088/1674-1056/ada1c7
GENERAL Prev   Next  

Quantum decoder design for subsystem surface code based on multi-head graph attention and edge weighting

Nai-Hua Ji(纪乃华)1,†, Hui-Qian Sun(孙汇倩)1, Bo Xiao(肖博)1, Ping-Li Song(宋平俐)1, and Hong-Yang Ma(马鸿洋)2,‡
1 School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266033, China;
2 School of Sciences, Qingdao University of Technology, Qingdao 266033, China
Abstract  Quantum error-correcting codes are essential for fault-tolerant quantum computing, as they effectively detect and correct noise-induced errors by distributing information across multiple physical qubits. The subsystem surface code with three-qubit check operators demonstrates significant application potential due to its simplified measurement operations and low logical error rates. However, the existing minimum-weight perfect matching (MWPM) algorithm exhibits high computational complexity and lacks flexibility in large-scale systems. Therefore, this paper proposes a decoder based on a graph attention network (GAT), representing error syndromes as undirected graphs with edge weights, and employing a multi-head attention mechanism to efficiently aggregate node features and enable parallel computation. Compared to MWPM, the GAT decoder exhibits linear growth in computational complexity, adapts to different quantum code structures, and demonstrates stronger robustness under high physical error rates. The experimental results demonstrate that the proposed decoder achieves an overall accuracy of 89.95% under various small code lattice sizes $(L = 2, 3, 4, 5)$, with the logical error rate threshold increasing to 0.0078, representing an improvement of approximately 13.04% compared to the MWPM decoder. This result significantly outperforms traditional methods, showcasing superior performance under small code lattice sizes and providing a more efficient decoding solution for large-scale quantum error correction.
Keywords:  quantum error correction      graph attention network      subsystem surface code      circuit-level noise  
Received:  25 October 2024      Revised:  16 December 2024      Accepted manuscript online:  20 December 2024
PACS:  03.67.-a (Quantum information)  
  87.64.Aa (Computer simulation)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
Fund: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2021MF049), the Joint Fund of the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2022LLZ012 and ZR2021LLZ001), and the Key Research and Development Program of Shandong Province, China (Grant No. 2023CXGC010901).
Corresponding Authors:  Nai-Hua Ji, Hong-Yang Ma     E-mail:  13964863452@126.com;hongyang_ma@aliyun.com

Cite this article: 

Nai-Hua Ji(纪乃华), Hui-Qian Sun(孙汇倩), Bo Xiao(肖博), Ping-Li Song(宋平俐), and Hong-Yang Ma(马鸿洋) Quantum decoder design for subsystem surface code based on multi-head graph attention and edge weighting 2025 Chin. Phys. B 34 020309

[1] Song Z Y, Wang Y N, Wang H W, et al. 2023 Acta Electronica Sinica 51 2030
[2] Gong L H, et al. 2024 Laser Phys. Lett. 21 055209
[3] Zhou N R, et al. 2024 Advanced Quantum Technologies 7 2400530
[4] Gong L H, et al. 2023 Advanced Quantum Technologies 6 2300097
[5] Chen Q H, et al. 2024 Chin. Phys. B 33 060314
[6] Wang H W,Xue Y J, Qu Y J, et al. 2022 npj Quantum Inf. 8 134
[7] Bravyi S, and Kitaev A Y 1998 arXiv preprint 52 9811
[8] Bravyi S, Duclos-Cianci G, Poulin D, et al. 2012 arXiv preprint 1207 1443
[9] Monz T, Kim K, Villar A S, et al. 2008 Nature 453 1008
[10] Cui T H, Wei Y Q, Li J, et al. 2024 Chin. Phys. B 33 043701
[11] Cai X, Zhou Y B, Yu W L, et al. 2024 Chin. Phys. B 33 068501
[12] Dennis E, Kitaev A, Landahl A, et al. 2021 J. Math. Phys. 43 4452
[13] Fowler A G, Whiteside A C and Hollenberg L C L 2012 Phys. Rev. A 86 042317
[14] Heim B, Svore KMand HastingsMB 2016 arXiv preprint 1609 06373
[15] Fowler A G, Mariantoni M, Martinis J M, et al. 2012 Phys. Rev. A 86 032324
[16] Veličković P, Cucurull G, Casanova A, et al. 2017 arXiv preprint 1710 10903
[17] Yang P, Lu P and Zhang T 2023 Chin. Phys. B 32 058902
[18] Vaswani A, et al. 2017 arXiv preprint 1706 03762
[19] Lange M, Havström P, Srivastava B, et al. 2023 arXiv preprint 2307 01241
[20] Lange M 2023 Decoding the Surface Code Using Graph Neural Networks Master’s Thesis (Gothenburg: University of Gothenburg, Department of Physics)
[21] Bergentall V 2021 Quantum Error Correction Using Graph Neural Networks Master’s Thesis (Gothenburg: University of Gothenburg, Department of Physics)
[22] Gao Z H, Zhu C S and Wang C L 2023 Chin. Phys. B 32 078101
[23] Li A Q, Li F, Gan Q D, et al. 2023 Appl. Sci. 13 9689
[24] Fan X K, Yan D D, Liu F, et al. 2022 Sci. Sin. Inform. 25 539
[25] Li D, Wang H W, Wang Y N, et al. 2022 Quantum Engineering 2022 9638108
[26] Li F, Li A Q, et al. 2024 Chin. Phys. B 33 040307
[27] Wang HW, Song Z Y,Wang Y N, et al. 2022 Quantum Inf. Process. 21 280
[28] Qu Y J, Chen Z, et al..2023 Chin. Phys. B 32 100307
[29] Wang H W, Xue Y J, Ma Y L, et al. 2022 Chin. Phys. B 31 010303
[30] Wilde M M 2009 Phys. Rev. A 79 062322
[31] Ji Y X, Chen Q H, Wang R, et al. 2024 Quantum Information Processing 23 255
[32] Ma H Y, Xu P A, Shao C H, et al. 2019 Int. J. Theor. Phys. 58 4241
[33] Huber F and Grassl M 2020 Quantum 4 284
[34] Liu B, Wang Y X 2024 Chin. Phys. B 33 084401
[35] Kipf T N and Welling M 2016 arXiv preprint 1609 02907
[36] Zhang Y, Wang X, Wang Y, et al. 2024 Chin. Phys. B 33 070702
[37] Zhou J, Cui G, Hu S, et al. 2020 AI Open 1 57
[38] Cheng T, Zhao R S, Wang S, et al. 2024 Chin. Phys. B 33 040303
[39] Simonyan K and Zisserman A 2014 arXiv preprint 1409 1556
[40] Xu S, Zhu X, Wang J, et al. 2021 Chin. Phys. B 30 048402
[41] Shao X G, Zhang J and Lu Y J 2024 Chin. Phys. B 33 070203
[42] Hewamalage H, Bergmeir C and Bandara K 2021 International Journal of Forecasting 37 388
[43] Huang Y J and Hu H G 2015 Chin. Phys. B 24 120701
[44] Grattarola D, Zambon D, Bianchi F M, et al. 2022 IEEE Trans. Neural Networks and Learning Systems 35 2708
[45] Liu C, Zhan Y B, et al. 2022 arXiv preprint 2204 07321
[46] Fey M and Lenssen J E 2019 arXiv preprint 1903 02428
[47] Gidney C 2021 Quantum 5 497
[48] Higgott O 2022 ACM Transactions on Quantum Computing 3 1
[1] Decoding topological XYZ2 codes with reinforcement learning based on attention mechanisms
Qing-Hui Chen(陈庆辉), Yu-Xin Ji(姬宇欣), Ke-Han Wang(王柯涵), Hong-Yang Ma(马鸿洋), and Nai-Hua Ji(纪乃华). Chin. Phys. B, 2024, 33(6): 060314.
[2] Recurrent neural network decoding of rotated surface codes based on distributed strategy
Fan Li(李帆), Ao-Qing Li(李熬庆), Qi-Di Gan(甘启迪), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2024, 33(4): 040307.
[3] AG-GATCN: A novel method for predicting essential proteins
Peishi Yang(杨培实), Pengli Lu(卢鹏丽), and Teng Zhang(张腾). Chin. Phys. B, 2023, 32(5): 058902.
[4] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[5] Performance of entanglement-assisted quantum codes with noisy ebits over asymmetric and memory channels
Ji-Hao Fan(樊继豪), Pei-Wen Xia(夏沛文), Di-Kang Dai(戴迪康), and Yi-Xiao Chen(陈一骁). Chin. Phys. B, 2023, 32(12): 120304.
[6] An overview of quantum error mitigation formulas
Dayue Qin(秦大粤), Xiaosi Xu(徐晓思), and Ying Li(李颖). Chin. Phys. B, 2022, 31(9): 090306.
[7] Determination of quantum toric error correction code threshold using convolutional neural network decoders
Hao-Wen Wang(王浩文), Yun-Jia Xue(薛韵佳), Yu-Lin Ma(马玉林), Nan Hua(华南), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(1): 010303.
[8] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[9] Encoding entanglement-assisted quantum stabilizer codes
Wang Yun-Jiang(王云江), Bai Bao-Ming(白宝明), Li Zhuo(李卓), Peng Jin-Ye(彭进业), and Xiao He-Ling(肖鹤玲) . Chin. Phys. B, 2012, 21(2): 020304.
[10] Jointly-check iterative decoding algorithm for quantum sparse graph codes
Shao Jun-Hu(邵军虎), Bai Bao-Ming(白宝明), Lin Wei(林伟), and Zhou Lin(周林). Chin. Phys. B, 2010, 19(8): 080307.
[11] Secure deterministic communication in a quantum loss channel using quantum error correction code
Wu Shuang(吴双), Liang Lin-Mei(梁林梅), and Li Cheng-Zu(李承祖). Chin. Phys. B, 2007, 16(5): 1229-1232.
No Suggested Reading articles found!