Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 050306    DOI: 10.1088/1674-1056/adbadb
GENERAL Prev   Next  

A graph neural network and multi-task learning-based decoding algorithm for enhancing XZZX code stability in biased noise

Bo Xiao(肖博)1, Zai-Xu Fan(范在旭)1, Hui-Qian Sun(孙汇倩)1, Hong-Yang Ma(马鸿洋)2, and Xing-Kui Fan(范兴奎)2,†
1 School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266033, China;
2 School of Sciences, Qingdao University of Technology, Qingdao 266033, China
Abstract  Quantum error correction is a technique that enhances a system's ability to combat noise by encoding logical information into additional quantum bits, which plays a key role in building practical quantum computers. The XZZX surface code, with only one stabilizer generator on each face, demonstrates significant application potential under biased noise. However, the existing minimum weight perfect matching (MWPM) algorithm has high computational complexity and lacks flexibility in large-scale systems. Therefore, this paper proposes a decoding method that combines graph neural networks (GNN) with multi-classifiers, the syndrome is transformed into an undirected graph, and the features are aggregated by convolutional layers, providing a more efficient and accurate decoding strategy. In the experiments, we evaluated the performance of the XZZX code under different biased noise conditions (bias=1, 20, 200) and different code distances (d=3, 5, 7, 9, 11). The experimental results show that under low bias noise (bias=1), the GNN decoder achieves a threshold of 0.18386, an improvement of approximately 19.12% compared to the MWPM decoder. Under high bias noise (bias=200), the GNN decoder reaches a threshold of 0.40542, improving by approximately 20.76%, overcoming the limitations of the conventional decoder. They demonstrate that the GNN decoding method exhibits superior performance and has broad application potential in the error correction of XZZX code.
Keywords:  quantum error correction      XZZX code      biased noise      graph neural network  
Received:  25 October 2024      Revised:  06 February 2025      Accepted manuscript online:  27 February 2025
PACS:  03.67.-a (Quantum information)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
  87.64.Aa (Computer simulation)  
Fund: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2021MF049), the Joint Fund of Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2022LL.Z012 and ZR2021LLZ001), and the Key Research and Development Program of Shandong Province, China (Grant No. 2023CXGC010901).
Corresponding Authors:  Xing-Kui Fan     E-mail:  fanxingkui@126.com

Cite this article: 

Bo Xiao(肖博), Zai-Xu Fan(范在旭), Hui-Qian Sun(孙汇倩), Hong-Yang Ma(马鸿洋), and Xing-Kui Fan(范兴奎) A graph neural network and multi-task learning-based decoding algorithm for enhancing XZZX code stability in biased noise 2025 Chin. Phys. B 34 050306

[1] Steane A 1998 Rep. Prog. Phys. 61 117
[2] Gyongyosi L and Imre S 2019 Comput. Sci. Rev. 31 51
[3] Herman D, Googin C and Liu X 2023 Nat. Rev. Phys. 5 450
[4] Hassija V, Chamola V and Saxena V 2020 ET Quantum Commun. 1 42
[5] Huang HL, Wu D and Fan D 2020 Sci. China Inf. Sci. 63 180501
[6] Wang H W, Xue Y J, Ma Y L, Hua N and Ma H Y 2022 Chin. Phys. B 31 010303
[7] Chen Q H, Ji Y X, Wang K H, Ma H Y and Ji N H 2024 Chin. Phys. B 33 060314
[8] Chiaverini J, Leibfried D and Schaetz T 2004 Chin. Phys. B 33 040307
[9] Aoki T, Takahashi G and Kajiya T 2009 Nat. Phys. 5 541
[10] Gong L H, Li M L, Cao H and Wang B 2024 Phys. Rev. B 21 055209
[11] Chao R and Reichardt B W 2018 Phys. Rev. Lett. 121 050502
[12] Krinner S, Lacroix N and Remm A 2022 Nature 605 669
[13] Beale S J, Wallman J J and Gutiérrez M 2018 Phys. Rev. Lett. 121 190501
[14] Shor P W 1995 Phys. Rev. A 52 R2493
[15] Bravyi S and Kitaev A Y 1998 arXiv: 9811052v1 [quant-ph]
[16] Freedman M H and Meyer D A 2001 Found. Comput. Math. 1 325
[17] Kolmogorov V 2009 Math. Prog. Comp. 1 43
[18] Andersen C K, Remm A and Lazar S 2020 Nat. Phys. 16 875
[19] Bonilla Ataides J P, Tuckett D K and Bartlett S D 2021 Nat. Commun. 12 2172
[20] Xu Q, Mannucci N and Seif A 2022 arXiv: 2203.16486 [quant-ph]
[21] Forlivesi D, Valentini L and Chiani M 2023 IEEE J. Sel. Areas Commun. 42 1808
[22] Fowler A G, Whiteside A C and Hollenberg L C L 2012 Phys. Rev. A 86 042317
[23] Kam JF, Gicev S, Modi K, Southwell A and Usman M 2024 arXiv: 2410.23779 [quant-ph]
[24] Chatterjee A, Das S and Ghosh S 2023 arXiv: 2308.02769 [quant-ph]
[25] Kuo K Y and Lai C Y 2023 IEEE Int. Symp. Inf. Theory (ISIT) June 26-July 1, 2022, Espoo, Finland, pp. 186-191
[26] Zheng J, Gao Q and Lü Y 2021 Proc. 40th Chinese Control Conf. (CCC) (Shenyang, China: IEEE) pp. 6335-6340
[27] Lange M, Havstrm P and Srivastava B 2023 arXiv: 2307.01241 [quantph]
[28] Niu Z, Zhong G and Yu H 2023 Neurocomputing 452 48
[29] Guo M H, Xu T X and Liu J J 2023 Comp. Visual Media 8331
[30] Resch S and Karpuzcu U R 2021 ACM Computing Surveys 54 1
[31] Du Y, HsiehMH, Liu T and Tao D 2020 arXiv: 2003.09416 [quant-ph]
[32] Higgott O, Bohdanowicz T C, Kubica A and Flammia S T 2023 Phys. Rev. X 13 031007
[33] Harper R, Flammia S T and Wallman J J 2020 Nat. Phys. 16 1184
[34] Sung Y and Braumüller J 2021 Nat. Comm. 12 967
[35] Wu Z, Pan S and Chen F 2020 IEEE Trans. Neural Netw. Learn. Syst. 32 4
[36] Asif N A, Sarker Y and Chakrabortty R K 2021 IEEE Access 9 60588
[37] Velickovic P 2023 Curr. Opin. Struct. Biol. 79 102538
[38] Luan S, Hua C and Lu Q 2022 Adv. Neural Inf. Process. Syst. 351362
[39] Nirthika R, Manivannan S and Ramanan A 2022 Neural Comput. Appl. 34 5321
[40] Ozdemir C 2023 Expert Syst. Appl. 223 119892
[41] Kurdija A S and Vladimir K 2022 IEEE Access 10 10402
[42] Lavasani A, Alavirad Y and Barkeshli M 2021 Nat. Phys. 17342
[43] Krinner S, Lacroix N and Remm A 2022 Nature 605 669
[44] Jiang W and Luo J. 2022 Expert Syst. Appl. 207 117921
[45] Kerstin B 2022 arXiv: 2205.08154 [quant-ph]
[46] Marcianò A, Terzidis K and Zappal E 2022 Expert Syst. Appl. 153 164
[47] Varsamopoulos S, Bertels K and Almudever C G 2019 IEEE Trans. Comput. 69 300
[48] Wen Z, Lin W and Wang T 2023 Biomimetics 8 199
[49] Sharaf Al-deen H S, Zeng Z and Al-sabri R 2021 Appl. Syst. Innov. 4 85
[50] Chen Y, Zhuang T and Guo K 2021 Appl. Intell. 51 4287
[51] Tiku S, Gufran D and Pasricha S 2022 IEEE Int. Conf. Indoor Positioning and Indoor Navigation (IPIN), Beijing, China, pp. 1-8
[1] Planar: A software for exact decoding quantum error correction codes with planar structure
Dongyang Feng(冯东阳), Hanyan Cao(曹涵彦), and Pan Zhang(张潘). Chin. Phys. B, 2025, 34(5): 050311.
[2] Graph distillation with network symmetry
Feng Lin(林峰) and Jia-Lin He(何嘉林). Chin. Phys. B, 2025, 34(4): 040204.
[3] Global receptive field transformer decoder method on quantum surface code data and syndrome error correction
Ao-Qing Li(李熬庆), Ce-Wen Tian(田策文), Xiao-Xuan Xu(徐晓璇), Hong-Yang Ma(马鸿洋), and Jun-Qing Liang(梁俊卿). Chin. Phys. B, 2025, 34(3): 030306.
[4] Quantum decoder design for subsystem surface code based on multi-head graph attention and edge weighting
Nai-Hua Ji(纪乃华), Hui-Qian Sun(孙汇倩), Bo Xiao(肖博), Ping-Li Song(宋平俐), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2025, 34(2): 020309.
[5] A graph neural network approach to the inverse design for thermal transparency with periodic interparticle system
Bin Liu(刘斌) and Yixi Wang(王译浠). Chin. Phys. B, 2024, 33(8): 084401.
[6] Physical information-enhanced graph neural network for predicting phase separation
Yaqiang Zhang(张亚强), Xuwen Wang(王煦文), Yanan Wang(王雅楠), and Wen Zheng(郑文). Chin. Phys. B, 2024, 33(7): 070702.
[7] Decoding topological XYZ2 codes with reinforcement learning based on attention mechanisms
Qing-Hui Chen(陈庆辉), Yu-Xin Ji(姬宇欣), Ke-Han Wang(王柯涵), Hong-Yang Ma(马鸿洋), and Nai-Hua Ji(纪乃华). Chin. Phys. B, 2024, 33(6): 060314.
[8] Recurrent neural network decoding of rotated surface codes based on distributed strategy
Fan Li(李帆), Ao-Qing Li(李熬庆), Qi-Di Gan(甘启迪), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2024, 33(4): 040307.
[9] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[10] Performance of entanglement-assisted quantum codes with noisy ebits over asymmetric and memory channels
Ji-Hao Fan(樊继豪), Pei-Wen Xia(夏沛文), Di-Kang Dai(戴迪康), and Yi-Xiao Chen(陈一骁). Chin. Phys. B, 2023, 32(12): 120304.
[11] An overview of quantum error mitigation formulas
Dayue Qin(秦大粤), Xiaosi Xu(徐晓思), and Ying Li(李颖). Chin. Phys. B, 2022, 31(9): 090306.
[12] Determination of quantum toric error correction code threshold using convolutional neural network decoders
Hao-Wen Wang(王浩文), Yun-Jia Xue(薛韵佳), Yu-Lin Ma(马玉林), Nan Hua(华南), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(1): 010303.
[13] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[14] Encoding entanglement-assisted quantum stabilizer codes
Wang Yun-Jiang(王云江), Bai Bao-Ming(白宝明), Li Zhuo(李卓), Peng Jin-Ye(彭进业), and Xiao He-Ling(肖鹤玲) . Chin. Phys. B, 2012, 21(2): 020304.
[15] Jointly-check iterative decoding algorithm for quantum sparse graph codes
Shao Jun-Hu(邵军虎), Bai Bao-Ming(白宝明), Lin Wei(林伟), and Zhou Lin(周林). Chin. Phys. B, 2010, 19(8): 080307.
No Suggested Reading articles found!