Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 090501    DOI: 10.1088/1674-1056/ad5aed
GENERAL Prev   Next  

Noise-induced phase transition in the Vicsek model through eigen microstate methodology

Yongnan Jia(贾永楠), Jiali Han(韩佳丽), and Qing Li(李擎)†
School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract  This paper presents a comprehensive framework for analyzing phase transitions in collective models such as the Vicsek model under various noise types. The Vicsek model, focusing on understanding the collective behaviors of social animals, is known due to its discontinuous phase transitions under vector noise. However, its behavior under scalar noise remains less conclusive. Renowned for its efficacy in the analysis of complex systems under both equilibrium and non-equilibrium states, the eigen microstate method is employed here for a quantitative examination of the phase transitions in the Vicsek model under both vector and scalar noises. The study finds that the Vicsek model exhibits discontinuous phase transitions regardless of noise type. Furthermore, the dichotomy method is utilized to identify the critical points for these phase transitions. A significant finding is the observed increase in the critical point for discontinuous phase transitions with escalation of population density.
Keywords:  Vicsek model      phase transitions      eigen microstate method      noise  
Received:  15 April 2024      Revised:  14 June 2024      Accepted manuscript online:  24 June 2024
PACS:  05.70.Fh (Phase transitions: general studies)  
  87.80.-y (Biophysical techniques (research methods))  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 62273033).
Corresponding Authors:  Qing Li     E-mail:  liqing@ies.ustb.edu.cn

Cite this article: 

Yongnan Jia(贾永楠), Jiali Han(韩佳丽), and Qing Li(李擎) Noise-induced phase transition in the Vicsek model through eigen microstate methodology 2024 Chin. Phys. B 33 090501

[1] Butt T, Mufti T, Humayun A, Rosenthal P B, Khan S, Khan S and Molloy J E 2010 J. Biol. Chem. 285 4964
[2] Herbert-Read J E, Perna A, Mann R P, Schaerf T M, Sumpter D J T and Ward A J W 2011 Proc. Natl. Acad. Sci. USA 108 18726
[3] Becco C, Vandewalle N, Delcourt J and Poncin P 2006 Physica A 367 487
[4] Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E, Giardina I, Lecomte V, Orlandi A, Parisi G, Procaccini A, Viale M and Zdravkovic V 2008 Proc. Natl. Acad. Sci. USA 105 1232
[5] Nagy M, Kos Z, Biro D and Vicsek T 2010 Nature 464 890
[6] Dalmao F and Ordecki E 2011 SLAM J. Appl. Math. 71 1307
[7] Jia Y N and Vicsek T 2019 New J. Phys. 21 093048
[8] Du J M 2019 Appl. Math. Comput. 363 124629
[9] Wang C H and DeBeer S 2021 Chem. Soc. Rev. 50 8743
[10] Du J M and Wu Z R 2022 Appl. Math. Comput. 430 127295
[11] Du J M and Wu Z R 2024 Knowledge-Based Systems 284 111287
[12] Reynolds C W 1987 ACM Siggraph Comput. Graph. 21 25
[13] Vicsek T, Czirok A, Ben-Jacob E, Cohen I and Shochet O 1995 Phys. Rev. Lett. 75 1226
[14] Cucker F and Smale S 2007 IEEE Trans. Automat. Control 52 852
[15] Barbaro A B T, Canizo J A, Carrillo J A and Degond P 2015 Multiscale Modeling and Simulation 14 1063
[16] Pearce D J G and Turner M S 2014 New J. Phys. 16 082002
[17] Aldana M and Huepe C 2003 J. Stat. Phys. 112 135
[18] Barbaro A B T and Degond P 2014 Discrete and Continuous Dynamical Systems B 19 1249
[19] Escaff D and Delpiano R 2020 Chaos 30 083137
[20] Du G L and Ye F F 2022 Chin. Phys. B 31 086401
[21] Vahabli D and Vicsek T 2023 Commun. Phys. 6 56
[22] Binder K 1981 Z. Phys. B 43 119
[23] Grégoire G and Chate H 2004 Phys. Rev. Lett. 92 025702
[24] Nagy M, Duruka I and Vicsek T 2007 Physica A 373 445
[25] Baglietto G and Albano E V 2009 Phys. Rev. E 80 050103
[26] Sun Y, Hu G K, Zhang Y W, Lu B, Lu Z H, Fan J F, Li X T, Deng Q M and Chen X S 2021 Commun. Theor. Phys. 73 065603
[27] Li X, Xue T T, Sun Y, Fan J F, Li H, Liu M X, Han Z G, Di Z R and Chen X S 2021 Chin. Phys. B 30 128703
[28] Hadamard J 1906 Bull. Am. Math. Soc. 12 194
[29] Strang G 1993 Am. Math. Mon. 100 848
[30] Lutz H O, Stein J, Datz S and Moak C D 1972 Phys. Rev. Lett. 28 8
[31] Privman V and Fisher M E 1984 Phys. Rev. B 30 322
[32] Privman V, Aharony A and Hohenberg P C 1991 Phase Transitions and Critical Phenomena (New York: Academic Press)
[33] Hu G K, Liu T, Liu M X, Chen W and Chen X S 2019 Sci. China Phys. Mech. Astron. 62 990511
[1] Dynamic properties of rumor propagation model induced by Lévy noise on social networks
Ying Jing(景颖), Youguo Wang(王友国), Qiqing Zhai(翟其清), and Xianli Sun(孙先莉). Chin. Phys. B, 2024, 33(9): 090203.
[2] First-principles study on stability and superconductivity of ternary hydride LaYHx (x =2, 3, 6 and 8)
Xiao-Zhen Yan(颜小珍), Xing-Zi Zhou(周幸姿), Chao-Fei Liu(刘超飞), Yin-Li Xu(徐寅力), Yi-Bin Huang(黄毅斌), Xiao-Wei Sheng(盛晓伟), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2024, 33(8): 086301.
[3] Effect of the mixing of s-wave and chiral p-wave pairings on electrical shot noise properties of normal metal/superconductor tunnel junctions
Yu-Chen Hu(胡雨辰) and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2024, 33(7): 077202.
[4] Cooperative activation of sodium channels for downgrading the energy efficiency in neuronal information processing
Haoran Yan(严浩然), Jiaqi Yan(颜家琦), Lianchun Yu(俞连春), and Yu-Feng Shao(邵玉峰). Chin. Phys. B, 2024, 33(5): 058801.
[5] Building and characterizing a stylus ion-trap system
Tai-Hao Cui(崔太豪), Ya-Qi Wei(魏雅琪), Ji Li(李冀), Quan Yuan(袁泉), Shuang-Qing Dai(戴双晴), Pei-Dong Li(李沛东), Fei Zhou(周飞), Jian-Qi Zhang(张建奇), Zhu-Jun Zheng(郑驻军), Liang Chen(陈亮), and Mang Feng(冯芒). Chin. Phys. B, 2024, 33(4): 043701.
[6] Interacting topological magnons in a checkerboard ferromagnet
Heng Zhu(朱恒), Hongchao Shi(施洪潮), Zhengguo Tang(唐政国), and Bing Tang(唐炳). Chin. Phys. B, 2024, 33(3): 037503.
[7] Dynamics and synchronization in a memristor-coupled discrete heterogeneous neuron network considering noise
Xun Yan(晏询), Zhijun Li(李志军), and Chunlai Li(李春来). Chin. Phys. B, 2024, 33(2): 028705.
[8] Symmetric Brownian motor subjected to Lévy noise
Kao Jia(贾考), Lan Hu(胡兰), and Linru Nie(聂林如). Chin. Phys. B, 2024, 33(2): 020502.
[9] Coherent optical frequency transfer via 972-km fiber link
Xue Deng(邓雪), Xiang Zhang(张翔), Qi Zang(臧琦), Dong-Dong Jiao(焦东东), Dan Wang(王丹), Jie Liu(刘杰), Jing Gao(高静), Guan-Jun Xu (许冠军), Rui-Fang Dong(董瑞芳), Tao Liu(刘涛), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2024, 33(2): 020602.
[10] Majorana noise model and its influence on the power spectrum
Shumeng Chen(陈书梦), Sifan Ding(丁思凡), Zhen-Tao Zhang(张振涛), and Dong E. Liu(刘东). Chin. Phys. B, 2024, 33(1): 017101.
[11] Sharing quantum nonlocality in the noisy scenario
Shu-Yuan Yang(杨舒媛), Jin-Chuan Hou(侯晋川), and Kan He(贺衎). Chin. Phys. B, 2024, 33(1): 010302.
[12] Floquet dynamical quantum phase transitions in transverse XY spin chains under periodic kickings
Li-Na Luan(栾丽娜), Mei-Yu Zhang(张镁玉), and Lin-Cheng Wang(王林成). Chin. Phys. B, 2023, 32(9): 090302.
[13] Phase behavior and percolation in an equilibrium system of symmetrically interacting Janus disks on the triangular lattice
Xixian Zhang(张希贤) and Hao Hu(胡皓). Chin. Phys. B, 2023, 32(8): 080502.
[14] Low-temperature ferromagnetism in tensile-strained LaCoO2.5 thin film
Yang-Yang Fan(范洋洋), Jing Wang(王晶), Feng-Xia Hu(胡凤霞), Bao-He Li(李宝河), Ai-Cong Geng(耿爱丛), Zhuo Yin(殷卓), Cheng Zhang(张丞), Hou-Bo Zhou(周厚博), Meng-Qin Wang(王梦琴), Zi-Bing Yu(尉紫冰), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2023, 32(8): 087504.
[15] Vibrational resonance in globally coupled bistable systems under the noise background
Jiangling Liu(刘江令), Chaorun Li(李朝润), Hailing Gao(高海玲), and Luchun Du(杜鲁春). Chin. Phys. B, 2023, 32(7): 070502.
No Suggested Reading articles found!