Special Issue:
SPECIAL TOPIC — Recent progress on kagome metals and superconductors
|
SPECIAL TOPIC — Recent progress on kagome metals and superconductors |
Prev
Next
|
|
|
Surface-sensitive electronic structure of kagome superconductor CsV3Sb5 |
Zhisheng Zhao(赵志生)1,†, Jianghao Yao(姚江浩)1,†, Rui Xu(徐瑞)1, Yuzhe Wang(王禹喆)1, Sen Liao(廖森)1, Zhengtai Liu(刘正太)2, Dawei Shen (沈大伟)3, Shengtao Cui(崔胜涛)3, Zhe Sun(孙喆)3, Yilin Wang(王义林)1, Donglai Feng(封东来)1,3, and Juan Jiang(姜娟)1,‡ |
1 School of Emerging Technology and Department of Physics, University of Science and Technology of China, Hefei 230026, China; 2 Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; 3 National Synchrotron Radiation Laboratory School of Nuclear Science and Technology, and New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract We systematically study the electronic structure of a kagome superconductor ${\rm Cs}{\rm V}_{{\rm 3}}{{\rm Sb}}_{{\rm 5}}$ at different temperatures covering both its charge density wave state and normal state with angle-resolved photoemission spectroscopy. We observe that the V-shaped band around $\bar{\varGamma }$ shows three different behaviors, referred to as $\alpha /\alpha '$, $\beta $ and $\gamma $, mainly at different temperatures. Detailed investigations confirm that these bands are all from the same bulk Sb-p$_{z}$ origin, but they are quite sensitive to the sample surface conditions mainly modulated by temperature. Thus, the intriguing temperature dependent electronic behavior of the band near $\bar{\varGamma }$ is affected by the sample surface condition, rather than intrinsic electronic behavior originating from the phase transition. Our result systematically reveals the confusing electronic structure behavior of the energy bands around $\bar{\varGamma }$, facilitating further exploration of the novel properties in this material.
|
Received: 14 June 2024
Revised: 13 August 2024
Accepted manuscript online: 16 August 2024
|
PACS:
|
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
74.20.Pq
|
(Electronic structure calculations)
|
|
71.18.+y
|
(Fermi surface: calculations and measurements; effective mass, g factor)
|
|
79.60.-i
|
(Photoemission and photoelectron spectra)
|
|
Fund: This work is supported by the National Natural Science Foundation of China (Grant Nos. 12174362 and 92065202), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302803), and the New Cornerstone Science Foundation. Part of this research used Beamline 03U of the Shanghai Synchrotron Radiation Facility, which is supported by ME2 project under contract No. 11227902 from the National Natural Science Foundation of China. |
Corresponding Authors:
Juan Jiang
E-mail: jjiangcindy@ustc.edu.cn
|
Cite this article:
Zhisheng Zhao(赵志生), Jianghao Yao(姚江浩), Rui Xu(徐瑞), Yuzhe Wang(王禹喆), Sen Liao(廖森), Zhengtai Liu(刘正太), Dawei Shen (沈大伟), Shengtao Cui(崔胜涛), Zhe Sun(孙喆), Yilin Wang(王义林), Donglai Feng(封东来), and Juan Jiang(姜娟) Surface-sensitive electronic structure of kagome superconductor CsV3Sb5 2024 Chin. Phys. B 33 107403
|
[1] Han M Y, Inoue H, Fang S A, John C, Ye L D, Chan M K, Graf D, Suzuki T, Ghimire M P, Cho W J, Kaxiras E and Checkelsky J G 2021 Nat. Commun. 12 5345 [2] Kang M G, Fang S A, Ye L D, Po H C, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Checkelsky J G and Comin R 2020 Nat. Commun. 11 4004 [3] Lin Z Y, Wang C Z, Wang P D, Yi S H, Li L, Zhang Q, Wang Y F, Wang Z Y, Huang H, Sun Y, Huang Y B, Shen D W, Feng D L, Sun Z, Cho J H, Zeng C G and Zhang Z Y 2020 Phys. Rev. B 102 155103 [4] Kang M G, Ye L D, Fang S A, You J S, Levitan A, Han M Y, Facio J I, Jozwiak C, Bostwick A, Rotenberg E, Chan M K, McDonald R D, Graf D, Kaznatcheev K, Vescovo E, Bell D C, Kaxiras E, Brink J V D, Richter M, Ghimire M P, Checkelsky J G and Comin R 2020 Nat. Mater. 19 163 [5] Ye L D, Kang M G, Liu J W, Cube F V, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature 555 638 [6] Liu Z H, Li M, Wang Q, Wang G W, Wen C H P, Jiang K, Lu X L, Yan S C, Huang Y B, Shen D W, Yin J X, Wang Z Q, Yin Z P, Lei H C and Wang S C 2020 Nat. Commun. 11 4002 [7] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D F, Liang A J, Xu Q N, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W H, Schnelle W, Wirth S, Chen Y L, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125 [8] Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C and Chen Y L 2019 Science 365 1282 [9] Li M, Wang Q, Wang G W, Yuan Z H, Song W H, Luo R, Liu Z T, Huang Y B, Liu Z H, Lei H C, Yin Z P and Wang S C 2021 Nat. Commun. 12 3129 [10] Wang Y, Liu Y X, Hao Z Y, Cheng W J, Deng J Z, Wang Y X, Gu Y H, Ma X M, Rong H T and Zhang F Y 2023 Chin. Phys. Lett. 40 037102 [11] Yu F H, Wen X K, Gui Z G, Wu T, Wang Z Y, Xiang Z J, Ying J J and Chen X H 2022 Chin. Phys. B 31 017405 [12] Gong C S, Tian S J, Tu Z J, Yin Q W, Fu Y, Luo R T and Lei H C 2022 Chin. Phys. Lett. 39 087401 [13] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilson J R and Wilson S D 2019 Phys. Rev. Mater. 3 094407 [14] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J F and Wilson S D 2020 Phys. Rev. Lett. 125 247002 [15] Xu H S, Yan Y J, Yin R T, Xia W, Fang S J, Chen Z Y, Li Y J, Yang W Q, Guo Y F and Feng D L 2021 Phys. Rev. Lett. 127 187004 [16] Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M X, Wang Z Q, Balents L, Wilson S D and Zeljkovic I 2021 Nature 599 216 [17] Chen H, Yang H T, Hu B, Zhao Z, Yuan J, Xing Y Q, Qian G J, Huang Z H, Li G, Ye Y H, Ma S, Ni S L, Zhang H, Yin Q W, Gong C S, Tu Z J, Lei H C, Tan H X, Zhou S, Shen C M, Dong X L, Yan B H, Wang Z Q and Gao H J 2021 Nature 599 222 [18] Shumiya N, Hossain M S, Yin J X, Jiang Y X, Ortiz B R, Liu H X, Shi Y G, Yin Q W, Lei H C, Zhang S T S, Chang G Q, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Guguchia Z, Wilson S D and Hasan M Z 2021 Phys. Rev. B 104 035131 [19] Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, Xu G, Guguchia Z, He J Y, Hossain M S, Liu X X, Ruff J, Kautzsch L, Zhang S, Chang G Q, Belopolski L, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Wang Z Q, Thomale R, Neupert T, Wilson S D and Hasan M Z 2021 Nat. Mater. 20 1353 [20] Feng X, Jiang K, Wang Z and Hu J 2021 Sci. Bull. 66 1384 [21] Li H, Zhao K, Ortiz B R, Oey Y, Wang Z, Wilson S D and Zeljkovic I 2023 Nat. Phys. 19 637 [22] Liang Z W, Huo X Y, Zhang F, Ma W R, Wu P, Zhang Z Y, Yu F H, Ying J J, Jiang K, Shan L, Wang Z Y and Chen X H 2021 Phys. Rev. X 11 031026 [23] Wang Q, Kong P F, Shi W J, Pei C Y, Wen C H P, Gao L L, Zhao Y, Yin Q W, Wu Y S, Li G, Lei H C, Li J, Chen Y L, Yan S C and Qi Y P 2021 Adv. Mater. 33 2102813 [24] Wang Z W, Jiang Y X, Yin J X, Li Y K, Wang G Y, Huang H L, Shan S, Liu J J, Zhu P, Shumiya N, Hossain M S, Liu H X, Shi Y G, Duan J X, Li X, Chang G Q, Dai P C, Ye Z J, Xu G, Wang Y C, Zheng H, Jia J F, Hasan M Z and Yao Y G 2021 Phys. Rev. B 104 075148 [25] Li H Z, Wan S Y, Li H, Li Q, Gu Q Q, Yang H, Li Y K, Wang Z W, Yao Y G and Wen H H 2022 Phys. Rev. B 105 045102 [26] Ortiz B R, Teicher S M L, Kautzsch L, Sarte P M, Ratcliff N, Harter J, Ruff J P C, Seshadri R and Wilson S D 2021 Phys. Rev. X 11 041030 [27] Tan H X, Liu Y Z, Wang Z Q and Yan B H 2021 Phys. Rev. Lett. 127 046401 [28] Hu Y, Wu X X, Ortiz B R, Han X L, Plumb N C, Wilson S D, Schnyder A P and Shi M 2022 Phys. Rev. B 106 L241106 [29] Nie L P, Sun K, Ma W R, Song D W, Zheng L X, Liang Z W, Wu P, Yu F H, Li J, Shan M, Zhao D, Li S J, Kang B L, Wu Z M, Zhou Y B, Liu K, Xiang Z J, Ying J J, Wang Z Y, Wu T and Chen X H 2022 Nature 604 59 [30] Hu Y, Wu X X, Ortiz B R, Ju S L, Han X, Ma J Z, Plumb N C, Radovic M, Thomale P, Wilson S D, Schnyder A P and Shi M 2022 Nat. Commun. 13 2220 [31] Liu Z H, Zhao N N, Yin Q W, Gong C S, Tu Z J, Li M, Song W H, Liu Z T, Shen D W, Huang Y B, Liu K, Lei H C and Wang S C 2021 Phys. Rev. X 11 041010 [32] Cho S, Ma H Y, Xia W, Yang Y C, Liu Z T, Huang Z, Jiang Z C, Lu X L, Liu J S, Liu Z H, Li J, Wang J H, Liu Y, Jia J F, Guo Y F, Liu J P and Shen D W 2021 Phys. Rev. Lett. 127 236401 [33] Hao Z Y, Cai Y Q, Liu Y X, Wang Y, Sui X L, Ma X M, Shen Z C, Jiang Z C, Yang Y C, Liu W L, Jiang Q, Liu Z T, Ye M, Shen D W, Liu Y, Cui S T, Chen J B, Wang L, Liu C, Lin J H, Wang J F, Huang B, Mei J W and Chen C Y 2022 Phys. Rev. B 106 L081101 [34] Jiang K, Wu T, Yin J X, Wang Z Y, Hasan M Z, Wilson S D, Chen X H and Hu J P 2023 Nat. Sci. Rev. 10 nwac199 [35] Luo Y, Peng S T, Teicher S M L, Huai L W, Hu Y, Han Y L, Ortiz B R, Liang Z W, Wei Z Y, Shen J C, Ou Z P, Wang B Q, Miao Y, Guo M Y, Hashimoto M, Lu D H, Qiao Z H, Wang Z Y, Wilson S D, Chen X H and He J F 2022 Phys. Rev. B 105 L241111 [36] Cai Y Q, Wang Y, Hao Z Y, Liu Y X, Sui X L, Liang Z W, Ma X M, Zhang F Y, Shen Z C, Zhang C C, Jiang Z C, Yang Y C, Liu W L, Jiang Q, Liu Z T, Ye M, Shen D W, Gao H, Xiao H B, Liu Z K, Sun Z, Liu Y, Cui S T, Chen J B, Wang L, Liu Cai, Lin J H, Huang B, Wang Z Y, Chen X H, Mei J W, Wang J F and Chen C Y 2024 Communications Materials 5 31 [37] Li C, Wu X X, Liu H X, Polley C, Guo Q D, Wang Y, Han X, Dendzik M, Berntsen M H, Thiagarajan B, Shi Y G, Schnyder A P and Tjernberg O 2022 Phys. Rev. Research 4 033072 [38] Yu J W, Xu Z, Xiao K B, Yuan Y H, Yin Q W, Hu Z Q, Gong C S, Guo Y K, Tu Z J, Tang P Z, Lei H C, Xue Q K and Li W 2022 Nano Lett. 22 918 [39] Kato T, Li Y K, Nakayama K, Wang Z W, Souma S, Kitamura M, Horiba K, Kumigashira H, Takahashi T and Sato T 2022 Phys. Rev. B 106 L121112 [40] Kato T, Li Y K, Liu M, Nakayama K, Wang Z W, Souma S, Kitamura M, Horiba K, Kumigashira H, Takahashi T, Yao Y G and Sato T 2023 Phys. Rev. B 107 245143 [41] Denner M M, Thomale R and Neupert T 2021 Phys. Rev. Lett. 127 217601 [42] Fu Y, Zhao N N, Chen Z, Yin Q W, Tu Z J, Gong C S, Xi C Y, Zhu X D, Sun Y P, Liu K and Lei H C 2021 Phys. Rev. Lett. 127 207002 [43] Liu Z H, Zhao N N, Yin Q W, Gong C S, Tu Z J, Li M, Song W H, Liu Z T, Shen D W, Huang Y B, Liu K, Lei H C and Wang S C 2021 Phys. Rev. X 11 041010 [44] Wang Z G, Ma S, Zhang Y H, Yang H T, Zhao Z, Ou Y, Zhu Y, Ni S L, Lu Z Y W, Chen H, Jiang K, Yu L, Zhang Y, Dong X L, Hu J P, Gao H J and Zhao Z X 2021 arXiv:2104.05556 [cond-mat.supr-con] [45] Nakayama K, Li Y K, Kato T, Liu M, Wang Z W, Takahashi T, Yao Y G and Sato T 2022 Phys. Rev. X 12 011001 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|