Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 107403    DOI: 10.1088/1674-1056/ad7016
Special Issue: SPECIAL TOPIC — Recent progress on kagome metals and superconductors
SPECIAL TOPIC — Recent progress on kagome metals and superconductors Prev   Next  

Surface-sensitive electronic structure of kagome superconductor CsV3Sb5

Zhisheng Zhao(赵志生)1,†, Jianghao Yao(姚江浩)1,†, Rui Xu(徐瑞)1, Yuzhe Wang(王禹喆)1, Sen Liao(廖森)1, Zhengtai Liu(刘正太)2, Dawei Shen (沈大伟)3, Shengtao Cui(崔胜涛)3, Zhe Sun(孙喆)3, Yilin Wang(王义林)1, Donglai Feng(封东来)1,3, and Juan Jiang(姜娟)1,‡
1 School of Emerging Technology and Department of Physics, University of Science and Technology of China, Hefei 230026, China;
2 Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China;
3 National Synchrotron Radiation Laboratory School of Nuclear Science and Technology, and New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei 230026, China
Abstract  We systematically study the electronic structure of a kagome superconductor ${\rm Cs}{\rm V}_{{\rm 3}}{{\rm Sb}}_{{\rm 5}}$ at different temperatures covering both its charge density wave state and normal state with angle-resolved photoemission spectroscopy. We observe that the V-shaped band around $\bar{\varGamma }$ shows three different behaviors, referred to as $\alpha /\alpha '$, $\beta $ and $\gamma $, mainly at different temperatures. Detailed investigations confirm that these bands are all from the same bulk Sb-p$_{z}$ origin, but they are quite sensitive to the sample surface conditions mainly modulated by temperature. Thus, the intriguing temperature dependent electronic behavior of the band near $\bar{\varGamma }$ is affected by the sample surface condition, rather than intrinsic electronic behavior originating from the phase transition. Our result systematically reveals the confusing electronic structure behavior of the energy bands around $\bar{\varGamma }$, facilitating further exploration of the novel properties in this material.
Keywords:  kagome      ARPES      charge density wave      surface sensitive  
Received:  14 June 2024      Revised:  13 August 2024      Accepted manuscript online:  16 August 2024
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.20.Pq (Electronic structure calculations)  
  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
  79.60.-i (Photoemission and photoelectron spectra)  
Fund: This work is supported by the National Natural Science Foundation of China (Grant Nos. 12174362 and 92065202), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302803), and the New Cornerstone Science Foundation. Part of this research used Beamline 03U of the Shanghai Synchrotron Radiation Facility, which is supported by ME2 project under contract No. 11227902 from the National Natural Science Foundation of China.
Corresponding Authors:  Juan Jiang     E-mail:  jjiangcindy@ustc.edu.cn

Cite this article: 

Zhisheng Zhao(赵志生), Jianghao Yao(姚江浩), Rui Xu(徐瑞), Yuzhe Wang(王禹喆), Sen Liao(廖森), Zhengtai Liu(刘正太), Dawei Shen (沈大伟), Shengtao Cui(崔胜涛), Zhe Sun(孙喆), Yilin Wang(王义林), Donglai Feng(封东来), and Juan Jiang(姜娟) Surface-sensitive electronic structure of kagome superconductor CsV3Sb5 2024 Chin. Phys. B 33 107403

[1] Han M Y, Inoue H, Fang S A, John C, Ye L D, Chan M K, Graf D, Suzuki T, Ghimire M P, Cho W J, Kaxiras E and Checkelsky J G 2021 Nat. Commun. 12 5345
[2] Kang M G, Fang S A, Ye L D, Po H C, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Checkelsky J G and Comin R 2020 Nat. Commun. 11 4004
[3] Lin Z Y, Wang C Z, Wang P D, Yi S H, Li L, Zhang Q, Wang Y F, Wang Z Y, Huang H, Sun Y, Huang Y B, Shen D W, Feng D L, Sun Z, Cho J H, Zeng C G and Zhang Z Y 2020 Phys. Rev. B 102 155103
[4] Kang M G, Ye L D, Fang S A, You J S, Levitan A, Han M Y, Facio J I, Jozwiak C, Bostwick A, Rotenberg E, Chan M K, McDonald R D, Graf D, Kaznatcheev K, Vescovo E, Bell D C, Kaxiras E, Brink J V D, Richter M, Ghimire M P, Checkelsky J G and Comin R 2020 Nat. Mater. 19 163
[5] Ye L D, Kang M G, Liu J W, Cube F V, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature 555 638
[6] Liu Z H, Li M, Wang Q, Wang G W, Wen C H P, Jiang K, Lu X L, Yan S C, Huang Y B, Shen D W, Yin J X, Wang Z Q, Yin Z P, Lei H C and Wang S C 2020 Nat. Commun. 11 4002
[7] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D F, Liang A J, Xu Q N, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W H, Schnelle W, Wirth S, Chen Y L, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125
[8] Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C and Chen Y L 2019 Science 365 1282
[9] Li M, Wang Q, Wang G W, Yuan Z H, Song W H, Luo R, Liu Z T, Huang Y B, Liu Z H, Lei H C, Yin Z P and Wang S C 2021 Nat. Commun. 12 3129
[10] Wang Y, Liu Y X, Hao Z Y, Cheng W J, Deng J Z, Wang Y X, Gu Y H, Ma X M, Rong H T and Zhang F Y 2023 Chin. Phys. Lett. 40 037102
[11] Yu F H, Wen X K, Gui Z G, Wu T, Wang Z Y, Xiang Z J, Ying J J and Chen X H 2022 Chin. Phys. B 31 017405
[12] Gong C S, Tian S J, Tu Z J, Yin Q W, Fu Y, Luo R T and Lei H C 2022 Chin. Phys. Lett. 39 087401
[13] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilson J R and Wilson S D 2019 Phys. Rev. Mater. 3 094407
[14] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J F and Wilson S D 2020 Phys. Rev. Lett. 125 247002
[15] Xu H S, Yan Y J, Yin R T, Xia W, Fang S J, Chen Z Y, Li Y J, Yang W Q, Guo Y F and Feng D L 2021 Phys. Rev. Lett. 127 187004
[16] Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M X, Wang Z Q, Balents L, Wilson S D and Zeljkovic I 2021 Nature 599 216
[17] Chen H, Yang H T, Hu B, Zhao Z, Yuan J, Xing Y Q, Qian G J, Huang Z H, Li G, Ye Y H, Ma S, Ni S L, Zhang H, Yin Q W, Gong C S, Tu Z J, Lei H C, Tan H X, Zhou S, Shen C M, Dong X L, Yan B H, Wang Z Q and Gao H J 2021 Nature 599 222
[18] Shumiya N, Hossain M S, Yin J X, Jiang Y X, Ortiz B R, Liu H X, Shi Y G, Yin Q W, Lei H C, Zhang S T S, Chang G Q, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Guguchia Z, Wilson S D and Hasan M Z 2021 Phys. Rev. B 104 035131
[19] Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, Xu G, Guguchia Z, He J Y, Hossain M S, Liu X X, Ruff J, Kautzsch L, Zhang S, Chang G Q, Belopolski L, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Wang Z Q, Thomale R, Neupert T, Wilson S D and Hasan M Z 2021 Nat. Mater. 20 1353
[20] Feng X, Jiang K, Wang Z and Hu J 2021 Sci. Bull. 66 1384
[21] Li H, Zhao K, Ortiz B R, Oey Y, Wang Z, Wilson S D and Zeljkovic I 2023 Nat. Phys. 19 637
[22] Liang Z W, Huo X Y, Zhang F, Ma W R, Wu P, Zhang Z Y, Yu F H, Ying J J, Jiang K, Shan L, Wang Z Y and Chen X H 2021 Phys. Rev. X 11 031026
[23] Wang Q, Kong P F, Shi W J, Pei C Y, Wen C H P, Gao L L, Zhao Y, Yin Q W, Wu Y S, Li G, Lei H C, Li J, Chen Y L, Yan S C and Qi Y P 2021 Adv. Mater. 33 2102813
[24] Wang Z W, Jiang Y X, Yin J X, Li Y K, Wang G Y, Huang H L, Shan S, Liu J J, Zhu P, Shumiya N, Hossain M S, Liu H X, Shi Y G, Duan J X, Li X, Chang G Q, Dai P C, Ye Z J, Xu G, Wang Y C, Zheng H, Jia J F, Hasan M Z and Yao Y G 2021 Phys. Rev. B 104 075148
[25] Li H Z, Wan S Y, Li H, Li Q, Gu Q Q, Yang H, Li Y K, Wang Z W, Yao Y G and Wen H H 2022 Phys. Rev. B 105 045102
[26] Ortiz B R, Teicher S M L, Kautzsch L, Sarte P M, Ratcliff N, Harter J, Ruff J P C, Seshadri R and Wilson S D 2021 Phys. Rev. X 11 041030
[27] Tan H X, Liu Y Z, Wang Z Q and Yan B H 2021 Phys. Rev. Lett. 127 046401
[28] Hu Y, Wu X X, Ortiz B R, Han X L, Plumb N C, Wilson S D, Schnyder A P and Shi M 2022 Phys. Rev. B 106 L241106
[29] Nie L P, Sun K, Ma W R, Song D W, Zheng L X, Liang Z W, Wu P, Yu F H, Li J, Shan M, Zhao D, Li S J, Kang B L, Wu Z M, Zhou Y B, Liu K, Xiang Z J, Ying J J, Wang Z Y, Wu T and Chen X H 2022 Nature 604 59
[30] Hu Y, Wu X X, Ortiz B R, Ju S L, Han X, Ma J Z, Plumb N C, Radovic M, Thomale P, Wilson S D, Schnyder A P and Shi M 2022 Nat. Commun. 13 2220
[31] Liu Z H, Zhao N N, Yin Q W, Gong C S, Tu Z J, Li M, Song W H, Liu Z T, Shen D W, Huang Y B, Liu K, Lei H C and Wang S C 2021 Phys. Rev. X 11 041010
[32] Cho S, Ma H Y, Xia W, Yang Y C, Liu Z T, Huang Z, Jiang Z C, Lu X L, Liu J S, Liu Z H, Li J, Wang J H, Liu Y, Jia J F, Guo Y F, Liu J P and Shen D W 2021 Phys. Rev. Lett. 127 236401
[33] Hao Z Y, Cai Y Q, Liu Y X, Wang Y, Sui X L, Ma X M, Shen Z C, Jiang Z C, Yang Y C, Liu W L, Jiang Q, Liu Z T, Ye M, Shen D W, Liu Y, Cui S T, Chen J B, Wang L, Liu C, Lin J H, Wang J F, Huang B, Mei J W and Chen C Y 2022 Phys. Rev. B 106 L081101
[34] Jiang K, Wu T, Yin J X, Wang Z Y, Hasan M Z, Wilson S D, Chen X H and Hu J P 2023 Nat. Sci. Rev. 10 nwac199
[35] Luo Y, Peng S T, Teicher S M L, Huai L W, Hu Y, Han Y L, Ortiz B R, Liang Z W, Wei Z Y, Shen J C, Ou Z P, Wang B Q, Miao Y, Guo M Y, Hashimoto M, Lu D H, Qiao Z H, Wang Z Y, Wilson S D, Chen X H and He J F 2022 Phys. Rev. B 105 L241111
[36] Cai Y Q, Wang Y, Hao Z Y, Liu Y X, Sui X L, Liang Z W, Ma X M, Zhang F Y, Shen Z C, Zhang C C, Jiang Z C, Yang Y C, Liu W L, Jiang Q, Liu Z T, Ye M, Shen D W, Gao H, Xiao H B, Liu Z K, Sun Z, Liu Y, Cui S T, Chen J B, Wang L, Liu Cai, Lin J H, Huang B, Wang Z Y, Chen X H, Mei J W, Wang J F and Chen C Y 2024 Communications Materials 5 31
[37] Li C, Wu X X, Liu H X, Polley C, Guo Q D, Wang Y, Han X, Dendzik M, Berntsen M H, Thiagarajan B, Shi Y G, Schnyder A P and Tjernberg O 2022 Phys. Rev. Research 4 033072
[38] Yu J W, Xu Z, Xiao K B, Yuan Y H, Yin Q W, Hu Z Q, Gong C S, Guo Y K, Tu Z J, Tang P Z, Lei H C, Xue Q K and Li W 2022 Nano Lett. 22 918
[39] Kato T, Li Y K, Nakayama K, Wang Z W, Souma S, Kitamura M, Horiba K, Kumigashira H, Takahashi T and Sato T 2022 Phys. Rev. B 106 L121112
[40] Kato T, Li Y K, Liu M, Nakayama K, Wang Z W, Souma S, Kitamura M, Horiba K, Kumigashira H, Takahashi T, Yao Y G and Sato T 2023 Phys. Rev. B 107 245143
[41] Denner M M, Thomale R and Neupert T 2021 Phys. Rev. Lett. 127 217601
[42] Fu Y, Zhao N N, Chen Z, Yin Q W, Tu Z J, Gong C S, Xi C Y, Zhu X D, Sun Y P, Liu K and Lei H C 2021 Phys. Rev. Lett. 127 207002
[43] Liu Z H, Zhao N N, Yin Q W, Gong C S, Tu Z J, Li M, Song W H, Liu Z T, Shen D W, Huang Y B, Liu K, Lei H C and Wang S C 2021 Phys. Rev. X 11 041010
[44] Wang Z G, Ma S, Zhang Y H, Yang H T, Zhao Z, Ou Y, Zhu Y, Ni S L, Lu Z Y W, Chen H, Jiang K, Yu L, Zhang Y, Dong X L, Hu J P, Gao H J and Zhao Z X 2021 arXiv:2104.05556
[cond-mat.supr-con]
[45] Nakayama K, Li Y K, Kato T, Liu M, Wang Z W, Takahashi T, Yao Y G and Sato T 2022 Phys. Rev. X 12 011001
[1] Single crystal growth and characterization of 166-type magnetic kagome metals
Huangyu Wu(吴黄宇), Jinjin Liu(刘锦锦), Yongkai Li(李永恺), Peng Zhu(朱鹏), Liu Yang(杨柳), Fuhong Chen(陈富红), Deng Hu(胡灯), and Zhiwei Wang(王秩伟). Chin. Phys. B, 2024, 33(9): 098101.
[2] Experimental observation of Fermi-level flat band in novel kagome metal CeNi5
Xue-Zhi Chen(陈学智), Le Wang(王乐), Shuai Zhang(张帅), Ren-Jie Zhang(张任杰), Yi-Wei Cheng(程以伟), Yu-Dong Hu(胡裕栋), Cheng-Nuo Meng(孟承诺), Zheng-Tai Liu(刘正太), Bai-Qing Lv(吕佰晴), and Yao-Bo Huang(黄耀波). Chin. Phys. B, 2024, 33(8): 087402.
[3] Two-fold symmetry of the in-plane resistance in kagome superconductor Cs(V1-xTax)3Sb5 with enhanced superconductivity
Zhen Zhao(赵振), Ruwen Wang(王汝文), Yuhang Zhang(张宇航), Ke Zhu(祝轲), Weiqi Yu(余维琪), Yechao Han(韩烨超), Jiali Liu(刘家利), Guojing Hu(胡国静), Hui Guo(郭辉), Xiao Lin(林晓), Xiaoli Dong(董晓莉), Hui Chen(陈辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2024, 33(7): 077406.
[4] Absence of BCS-BEC crossover in FeSe0.45Te0.55 superconductor
Junjie Jia(贾俊杰), Yadong Gu(谷亚东), Chaohui Yin(殷超辉), Yingjie Shu(束英杰), Yiwen Chen(陈逸雯), Jumin Shi(史聚民), Xing Zhang(张杏), Hao Chen(陈浩), Taimin Miao(苗泰民), Xiaolin Ren(任晓琳), Bo Liang(梁波), Wenpei Zhu(朱文培), Neng Cai(蔡能), Fengfeng Zhang(张丰丰), Shenjin Zhang(张申金), Feng Yang(杨峰), Zhimin Wang(王志敏), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Hanqing Mao(毛寒青), Guodong Liu(刘国东), Zhian Ren(任治安), Lin Zhao(赵林), and Xing-Jiang Zhou(周兴江). Chin. Phys. B, 2024, 33(7): 077404.
[5] Crystal growth, magnetic and electrical transport properties of the kagome magnet RCr6Ge6 (R=Gd-Tm)
Xingyu Yang(杨星宇), Qingqi Zeng(曾庆祺), Miao He(何苗), Xitong Xu(许锡童), Haifeng Du(杜海峰), and Zhe Qu(屈哲). Chin. Phys. B, 2024, 33(7): 077501.
[6] Layered kagome compound Na2Ni3S4 with topological flat band
Junyao Ye(叶君耀), Yihao Lin(林益浩), Haozhe Wang(王浩哲), Zhida Song(宋志达), Ji Feng(冯济), Weiwei Xie(谢韦伟), and Shuang Jia(贾爽). Chin. Phys. B, 2024, 33(5): 057103.
[7] Superconductivity in kagome metal ThRu3Si2
Yi Liu(刘艺), Jing Li(厉静), Wu-Zhang Yang(杨武璋), Jia-Yi Lu(卢佳依), Bo-Ya Cao(曹博雅), Hua-Xun Li(李华旬), Wan-Li Chai(柴万力), Si-Qi Wu(武思祺), Bai-Zhuo Li(李佰卓), Yun-Lei Sun(孙云蕾), Wen-He Jiao(焦文鹤), Cao Wang(王操), Xiao-Feng Xu(许晓峰), Zhi Ren(任之), and Guang-Han Cao(曹光旱). Chin. Phys. B, 2024, 33(5): 057401.
[8] Enhanced anomalous Hall effect in kagome magnet YbMn6Sn6 with intermediate-valence ytterbium
Longfei Li(李龙飞), Shengwei Chi(迟晟玮), Wenlong Ma(马文龙), Kaizhen Guo(郭凯臻), Gang Xu(徐刚), and Shuang Jia(贾爽). Chin. Phys. B, 2024, 33(5): 057501.
[9] Band structures of strained kagome lattices
Luting Xu(徐露婷) and Fan Yang(杨帆). Chin. Phys. B, 2024, 33(2): 027101.
[10] Visualizing the electronic structure of kagome magnet LuMn6Sn6 by angle-resolved photoemission spectroscopy
Man Li(李满), Qi Wang(王琦), Liqin Zhou(周丽琴), Wenhua Song(宋文华), Huan Ma(马欢), Pengfei Ding(丁鹏飞), Alexander Fedorov, Yaobo Huang(黄耀波), Bernd Büchner, Hechang Lei(雷和畅), Shancai Wang(王善才), and Rui Lou(娄睿). Chin. Phys. B, 2024, 33(11): 117101.
[11] Anomalous Hall effect and electronic correlation in a spin-reoriented kagome antiferromagnet LuFe6Sn6
Meng Lyu(吕孟), Yang Liu(刘洋), Shen Zhang(张伸), Junyan Liu(刘俊艳), Jinying Yang(杨金颖), Yibo Wang(王一博), Yiting Feng(冯乙婷), Xuebin Dong(董学斌), Binbin Wang(王彬彬), Hongxiang Wei(魏红祥), and Enke Liu(刘恩克). Chin. Phys. B, 2024, 33(10): 107507.
[12] Pairing correlation of the kagome-lattice Hubbard model with the nearest-neighbor interaction
Chen Yang(杨晨), Chao Chen(陈超), Runyu Ma(马润宇), Ying Liang(梁颖), and Tianxing Ma(马天星). Chin. Phys. B, 2024, 33(10): 107404.
[13] Magnetoresistance hysteresis in the superconducting state of kagome CsV3Sb5
Tian Le(乐天), Jinjin Liu(刘锦锦), Zhiwei Wang(王秩伟), and Xiao Lin(林效). Chin. Phys. B, 2024, 33(10): 107402.
[14] Manipulating charge density wave state in kagome compound RbV3Sb5
Yu-Xin Meng(孟雨欣), Cheng-Long Xue(薛成龙), Li-Guo Dou(窦立国), Wei-Min Zhao(赵伟民), Qi-Wei Wang(汪琪玮), Yong-Jie Xu(徐永杰), Xiangqi Liu(刘祥麒), Wei Xia(夏威), Yanfeng Guo(郭艳峰), and Shao-Chun Li(李绍春). Chin. Phys. B, 2023, 32(9): 096801.
[15] Single crystal growth and electronic structure of Rh-doped Sr3Ir2O7
Bingqian Wang(王冰倩), Shuting Peng(彭舒婷), Zhipeng Ou(欧志鹏), Yuchen Wang(王宇晨), Muhammad Waqas, Yang Luo(罗洋), Zhiyuan Wei(魏志远), Linwei Huai(淮琳崴), Jianchang Shen(沈建昌), Yu Miao(缪宇), Xiupeng Sun(孙秀鹏), Yuewei Yin(殷月伟), and Junfeng He(何俊峰). Chin. Phys. B, 2023, 32(8): 087108.
No Suggested Reading articles found!