Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 107402    DOI: 10.1088/1674-1056/ad6423
Special Issue: SPECIAL TOPIC — Recent progress on kagome metals and superconductors
SPECIAL TOPIC — Recent progress on kagome metals and superconductors Prev   Next  

Magnetoresistance hysteresis in the superconducting state of kagome CsV3Sb5

Tian Le(乐天)1,2,†, Jinjin Liu(刘锦锦)3,4, Zhiwei Wang(王秩伟)3,4,5, and Xiao Lin(林效)1,2,‡
1 Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China;
2 Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China;
3 Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China;
4 Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China;
5 Material Science Center, Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314011, China
Abstract  The hysteresis of magnetoresistance observed in superconductors is of great interest due to its potential connection with unconventional superconductivity. In this study, we perform electrical transport measurements on kagome superconductor CsV$_3$Sb$_5$ nanoflakes and uncover unusual hysteretic behavior of magnetoresistance in the superconducting state. This hysteresis can be induced by applying either a large DC or AC current at temperatures ($T$) well below the superconducting transition temperature ($T_{\rm c}$). As $T$ approaches $T_{\rm c}$, similar weak hysteresis is also detected by applying a small current. Various scenarios are discussed, with particular focus on the effects of vortex pinning and the presence of time-reversal-symmtery-breaking superconducting domains. Our findings support the latter, hinting at chiral superconductivity in kagome superconductors.
Keywords:  hysteresis      magnetoresistance      kagome superconductor      chiral superconductor  
Received:  13 June 2024      Revised:  11 July 2024      Accepted manuscript online:  17 July 2024
PACS:  74.78.-w (Superconducting films and low-dimensional structures)  
  74.25.F- (Transport properties)  
  85.25.-j (Superconducting devices)  
  74.25.-q (Properties of superconductors)  
Fund: Project supported by the “Pioneer” and “Leading Goose” R&D Program of Zhejiang (Grant No. 2024SDXHDX0007), the National Natural Science Foundation of China (Grant No. 12474131), the China Postdoctoral Science Foundation (Grant Nos. 2022M722845 and 2023T160586), the Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars (Grant No. LR23A040001), the Research Center for Industries of the Future (RCIF) at Westlake University (Grant No. WU2023C009), the National Key R&D Program of China (Grant Nos. 2020YFA0308800 and 2022YFA1403400), and the Beijing Natural Science Foundation (Grant No. Z210006).
Corresponding Authors:  Tian Le, Xiao Lin     E-mail:  letian@westlake.edu.cn;linxiao@westlake.edu.cn

Cite this article: 

Tian Le(乐天), Jinjin Liu(刘锦锦), Zhiwei Wang(王秩伟), and Xiao Lin(林效) Magnetoresistance hysteresis in the superconducting state of kagome CsV3Sb5 2024 Chin. Phys. B 33 107402

[1] Ye H Q, Le T, Su H, Zhang Y N, Luo S S, Gutmann M J, Yuan H Q and Smidman M 2022 Phys. Rev. B 105 014405
[2] Ye H Q, Zhang Y N, Le T, Yuan H Q and Smidman M 2024 Phys. Rev. B 109 104414
[3] Wu M, Lou Z, Dai C M, Wang T, Wang J, Zhu Z, Xu Z, Sun T, Li W, Zheng X and Lin X 2023 Adv. Mater. 35 2300450
[4] Nöel P, Trier F, Vicente Arche L M, Bréhin J, Vaz D C, Garcia V, Fusil S, Barthélémy A, Vila L, Bibes M, et al. 2020 Nature 580 483
[5] Barber M E, Steppke A, Mackenzie A P and Hicks C W 2019 Rev. Sci. Instrum. 90 023904
[6] Lv B Q, Zong A, Wu D, Rozhkov A V, Fine B V, Chen S D, Hashimoto M, Lu D H, Li M, Huang Y B, Ruff J P C, Walko D A, Chen Z H, Hwang I, Su Y, Shen X, Wang X, Han F, Po H C, Wang Y, JarilloHerrero P, Wang X, Zhou H, Sun C J, Wen H, Shen Z X, Wang N L and Gedik N 2022 Phys. Rev. Lett. 128 036401
[7] Ji L, Rzchowski M S, Anand N and Tinkham M 1993 Phys. Rev. B 47 470
[8] Felner I, Galstyan E, Lorenz B, Cao D, Wang Y S, Xue Y Y and Chu C W 2003 Phys. Rev. B 67 134506
[9] Ru H, Lin Y S, Chen Y C, Feng Y and Wang Y H 2019 Chin. Phys. Lett. 36 077402
[10] Semenov S, Balaev A and Balaev D 2019 J. Appl. Phys. 125 033903
[11] Dikin D A, Mehta M, Bark C W, Folkman C M, Eom C B and Chandrasekhar V 2011 Phys. Rev. Lett. 107 056802
[12] Hua X, Zeng Z, Meng F, Yao H, Huang Z, Long X, Li Z, Wang Y, Wang Z, Wu T, et al. 2024 Nat. Phys. 20 957
[13] Chiu S P, Tsuei C, Yeh S S, Zhang F C, Kirchner S and Lin J J 2021 Sci. Adv. 7 eabg6569
[14] Wang J, Gong X, Yang G, Lyu Z, Pang Y, Liu G, Ji Z, Fan J, Jing X, Yang C, et al. 2017 Phys. Rev. B 96 054519
[15] Kidwingira F, Strand J, Van Harlingen D and Maeno Y 2006 Science 314 1267
[16] Wang S, Feng X, Fang J Z, Peng J P, Sun Z T, Yang J J, Liu J, Zhao J J, Wang J K, Liu X J, et al. 2024 arXiv:2405.12592
[17] Jiang K, Wu T, Yin J X, Wang Z, Hasan M Z, Wilson S D, Chen X and Hu J 2023 Nat. Sci. Rev. 10 nwac199
[18] Wilson S D and Ortiz B R 2024 Nat. Rev. Mater. 9 420
[19] Wang Y, Liu Y, Hao Z, Cheng W, Deng J, Wang Y, Gu Y, Ma X M, Rong H, Zhang F, et al. 2023 Chin. Phys. Lett. 40 037102
[20] Zhu H, Li T, Yu F, Li Y, Wang S, Wu Y, Liu Z, Shang Z, Cui S, Liu Y, et al. 2023 Chin. Phys. Lett. 40 047301
[21] Mu C, Yin Q, Tu Z, Gong C, Lei H, Li Z and Luo J 2021 Chin. Phys. Lett. 38 077402
[22] Duan W, Nie Z, Luo S, Yu F, Ortiz B R, Yin L, Su H, Du F, Wang A, Chen Y, et al. 2021 Sci. Chin. Phys. Mechan. Astron. 64 107462
[23] Roppongi M, Ishihara K, Tanaka Y, Ogawa K, Okada K, Liu S, Mukasa K, Mizukami Y, Uwatoko Y, Grasset R, et al. 2023 Nat. Commun. 14 667
[24] Zhong Y, Liu J, Wu X, Guguchia Z, Yin J X, Mine A, Li Y, Najafzadeh S, Das D, Mielke III C, et al. 2023 Nature 617 488
[25] Chen H, Yang H, Hu B, Zhao Z, Yuan J, Xing Y, Qian G, Huang Z, Li G, Ye Y, et al. 2021 Nature 599 222
[26] Ge J, Wang P, Xing Y, Yin Q, Wang A, Shen J, Lei H, Wang Z and Wang J 2024 Phys. Rev. X 14 021025
[27] Ko W H, Lee P A and Wen X G 2009 Phys. Rev. B 79 214502
[28] Zhao H, Li H, Ortiz B R, Teicher S M, Park T, Ye M, Wang Z, Balents L, Wilson S D and Zeljkovic I 2021 Nature 599 216
[29] Mielke III C, Das D, Yin J X, Liu H, Gupta R, Jiang Y X, Medarde M, Wu X, Lei H C, Chang J, et al. 2022 Nature 602 245
[30] Guo C, Putzke C, Konyzheva S, Huang X, Gutierrez-Amigo M, Errea I, Chen D, Vergniory M G, Felser C, Fischer M H, et al. 2022 Nature 611 461
[31] Farhang C, Wang J, Ortiz B R, Wilson S D and Xia J 2023 Nat. Commun. 14 5326
[32] Gupta R, Das D, Mielke III C, Ritz E T, Hotz F, Yin Q, Tu Z, Gong C, Lei H, Birol T, et al. 2022 Commun. Phys. 5 232
[33] Yu L, Wang C, Zhang Y, Sander M, Ni S, Lu Z, Ma S, Wang Z, Zhao Z, Chen H, et al. 2021 arXiv:2107.10714
[34] Guguchia Z, Khasanov R and Luetkens H 2023 npj Quan. Mater. 8 41
[35] Le T, Pan Z, Xu Z, Liu J, Wang J, Lou Z, Yang X, Wang Z, Yao Y, Wu C, et al. 2024 Nature 630 64
[36] Samukawa Y, Maeda M, Jiang N, Nakamura R, Watanabe M, Takaki K, Moriyasu Y, Kudo K and Niimi Y 2024 arXiv:2404.19278
[37] Tinkham M 2004 Introduction to superconductivity (Courier Corporation)
[38] Bouhon A and Sigrist M 2010 New J. Phys. 12 043031
[39] Rømer A T, Bhattacharyya S, Valentí R, Christensen M H and Andersen B M 2022 Phys. Rev. B 106 174514
[40] Wu X, Schwemmer T, Müller T, Consiglio A, Sangiovanni G, Di Sante D, Iqbal Y, Hanke W, Schnyder A P, Denner M M, et al. 2021 Phys. Rev. Lett. 127 177001
[41] Yu S L and Li J X 2012 Phys. Rev. B 85 144402
[1] Simulation of magnetization process and Faraday effect of magnetic bilayer films
Sheng Gao(高升), An Du(杜安), Lei Zhang(张磊), Tian-Guang Li(李天广), and Da-Cheng Ma(马大成). Chin. Phys. B, 2024, 33(9): 097505.
[2] Two-dimensional Sb net generated nontrivial topological states in SmAgSb2 probed by quantum oscillations
Jian Yuan(袁健), Xian-Biao Shi(石贤彪), Hong Du(杜红), Tian Li(李田), Chuan-Ying Xi(郗传英), Xia Wang(王霞), Wei Xia(夏威), Bao-Tian Wang(王保田), Rui-Dan Zhong(钟瑞丹), and Yan-Feng Guo(郭艳峰). Chin. Phys. B, 2024, 33(7): 077102.
[3] Two-fold symmetry of the in-plane resistance in kagome superconductor Cs(V1-xTax)3Sb5 with enhanced superconductivity
Zhen Zhao(赵振), Ruwen Wang(王汝文), Yuhang Zhang(张宇航), Ke Zhu(祝轲), Weiqi Yu(余维琪), Yechao Han(韩烨超), Jiali Liu(刘家利), Guojing Hu(胡国静), Hui Guo(郭辉), Xiao Lin(林晓), Xiaoli Dong(董晓莉), Hui Chen(陈辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2024, 33(7): 077406.
[4] Enhanced superelasticity and reversible elastocaloric effect in nano-grained NiTi alloys with low stress hysteresis
Min Zhou(周敏), Wei Wang(王维), Haojian Su(苏浩健), Zhongjun Hu(胡忠军), and Laifeng Li(李来风). Chin. Phys. B, 2024, 33(5): 056501.
[5] Anisotropic spin transport and photoresponse characteristics detected by tip movement in magnetic single-molecule junction
Deng-Hui Chen(陈登辉), Zhi Yang(羊志), Xin-Yu Fu(付新宇), Shen-Ao Qin(秦申奥), Yan Yan(严岩), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2024, 33(4): 047201.
[6] Negative magnetoresistance in the antiferromagnetic semimetal V1/3TaS2
Zi Wang(王子), Xin Peng(彭馨), Shengnan Zhang(张胜男), Yahui Su(苏亚慧), Shaodong Lai(赖少东), Xuan Zhou(周旋), Chunxiang Wu(吴春翔), Tingyu Zhou(周霆宇), Hangdong Wang(王杭栋), Jinhu Yang(杨金虎), Bin Chen(陈斌), Huifei Zhai(翟会飞), Quansheng Wu(吴泉生), Jianhua Du(杜建华), Zhiwei Jiao(焦志伟), and Minghu Fang(方明虎). Chin. Phys. B, 2024, 33(3): 037301.
[7] Unconventional room-temperature negative magnetoresistance effect in Au/n-Ge:Sb/Au devices
Xiong He(何雄), Fan-Li Yang(杨凡黎), Hao-Yu Niu(牛浩峪), Li-Feng Wang(王立峰), Li-Zhi Yi(易立志),Yun-Li Xu(许云丽), Min Liu(刘敏), Li-Qing Pan(潘礼庆), and Zheng-Cai Xia(夏正才). Chin. Phys. B, 2024, 33(3): 037504.
[8] Linear magnetoresistance and structural distortion in layered SrCu4-xP2 single crystals
Yong Nie(聂勇), Zheng Chen(陈正), Wensen Wei(韦文森), Huijie Li(李慧杰), Yong Zhang(张勇), Ming Mei(梅明), Yuanyuan Wang(王园园), Wenhai Song(宋文海), Dongsheng Song(宋东升), Zhaosheng Wang(王钊胜), Xiangde Zhu(朱相德), Wei Ning(宁伟), and Mingliang Tian(田明亮). Chin. Phys. B, 2024, 33(1): 016108.
[9] Electric modulation of anisotropic magnetoresistance in Pt/HfO2-x/NiOy/Ni heterojunctions
Xiaoyu Ye(叶晓羽), Xiaojian Zhu(朱小健), Huali Yang(杨华礼), Jipeng Duan(段吉鹏), Cui Sun(孙翠), and Run-Wei Li(李润伟). Chin. Phys. B, 2023, 32(8): 087305.
[10] Hysteresis loss free soft magnetic ferrites based on Larmor precession
Shuang-Jiu Feng(冯双久), Xin-Li Zhao(赵幸丽), Shou-Jin Zhu(朱守金),Qing-Rong Lv(吕庆荣), Xu-Cai Kan(阚绪材), and Xian-Song Liu(刘先松). Chin. Phys. B, 2023, 32(8): 087503.
[11] Negative magnetoresistance in Dirac semimetal Cd3As2 with in-plane magnetic field perpendicular to current
Hao-Nan Cui(崔浩楠), Guang-Yu Zhu(祝光宇), Jian-Kun Wang(王建坤), Jia-Jie Yang(杨佳洁), Wen-Zhuang Zheng(郑文壮), Ben-Chuan Lin(林本川), Zhi-Min Liao(廖志敏), Shuo Wang(王硕), and Da-Peng Yu(俞大鹏). Chin. Phys. B, 2023, 32(7): 077305.
[12] Improved contact angle measurement in multiphase lattice Boltzmann
Xing-Guo Zhong(钟兴国), Yang-Sha Liu(刘阳莎), Yi-Chen Yao(姚怡辰), Bing He(何冰), and Bing-Hai Wen(闻炳海). Chin. Phys. B, 2023, 32(5): 054701.
[13] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[14] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[15] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
No Suggested Reading articles found!