Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 096801    DOI: 10.1088/1674-1056/acd8b1
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Manipulating charge density wave state in kagome compound RbV3Sb5

Yu-Xin Meng(孟雨欣)1,2, Cheng-Long Xue(薛成龙)1,2, Li-Guo Dou(窦立国)1,2, Wei-Min Zhao(赵伟民)1,2, Qi-Wei Wang(汪琪玮)1,2, Yong-Jie Xu(徐永杰)1,2, Xiangqi Liu(刘祥麒)3, Wei Xia(夏威)3,4, Yanfeng Guo(郭艳峰)3,4,†, and Shao-Chun Li(李绍春)1,2,5,6,‡
1 National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China;
2 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;
3 School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China;
4 Shanghai Tech Laboratory for Topological Physics, Shanghai 201210, China;
5 Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, China;
6 Hefei National Laboratory, Hefei 230088, China
Abstract  Owing to the unique electronic structure, kagome materials AV3Sb5 (A=K, Rb, Cs) provide a fertile platform of quantum phenomena such as the strongly correlated state and topological Dirac band. It is well known that RbV3Sb5 exhibits a 2×2 unconventional charge density wave (CDW) state at low temperature, and the mechanism is controversial. Here, by using scanning tunneling microscopy/spectroscopy (STM/STS), we successfully manipulated the CDW state in the Sb plane of RbV3Sb5, and realized a new sqrt $\sqrt 3 $×$\sqrt 3 $ modulation together with the ubiquitous 2×2 period in the CDW state of RbV3Sb5. This work provides a new understanding of the collective quantum ground states in the kagome materials.
Keywords:  kagome material      charge density wave      scanning tunneling microscopy  
Received:  17 April 2023      Revised:  23 May 2023      Accepted manuscript online:  25 May 2023
PACS:  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  71.45.Lr (Charge-density-wave systems)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA1400403), the National Natural Science Foundation of China (Grant Nos. 92165205, 11790311, and 11774149), and Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302800). Y F Guo acknowledges the support by the open project of Beijing National Laboratory for Condensed Matter Physics (Grant No. ZBJ2106110017) and the Double First-Class Initiative Fund of Shanghai Tech University.
Corresponding Authors:  Yanfeng Guo, Shao-Chun Li     E-mail:  guoyf@shanghaitech.edu.cn;scli@nju.edu.cn

Cite this article: 

Yu-Xin Meng(孟雨欣), Cheng-Long Xue(薛成龙), Li-Guo Dou(窦立国), Wei-Min Zhao(赵伟民), Qi-Wei Wang(汪琪玮), Yong-Jie Xu(徐永杰), Xiangqi Liu(刘祥麒), Wei Xia(夏威), Yanfeng Guo(郭艳峰), and Shao-Chun Li(李绍春) Manipulating charge density wave state in kagome compound RbV3Sb5 2023 Chin. Phys. B 32 096801

[1] Balents L 2010 Nature 464 199
[2] Simeng Yan D A H and Steven R White 2011 Science 332 1173
[3] Guo H M and Franz M 2009 Phys. Rev. B 80 113102
[4] Kang M, Ye L, Fang S, You J S, Levitan A, Han M, Facio J I, Jozwiak C, Bostwick A, Rotenberg E, Chan M K, McDonald R D, Graf D, Kaznatcheev K, Vescovo E, Bell D C, Kaxiras E, van den Brink J, Richter M, Prasad Ghimire M, Checkelsky J G and Comin R 2020 Nat. Mater. 19 163
[5] Wang Q, Xu Y, Lou R, Liu Z, Li M, Huang Y, Shen D, Weng H, Wang S and Lei H 2018 Nat. Commun. 9 3681
[6] Yin J X, Zhang S S, Chang G, Wang Q, Tsirkin S S, Guguchia Z, Lian B, Zhou H, Jiang K, Belopolski I, Shumiya N, Multer D, Litskevich M, Cochran T A, Lin H, Wang Z, Neupert T, Jia S, Lei H and Hasan M Z 2019 Nat. Phys. 15 443
[7] Yu S L and Li J X 2012 Phys. Rev. B 85 144402
[8] Kiesel M L, Platt C and Thomale R 2013 Phys. Rev. Lett. 110 126405
[9] Kiesel M L and Thomale R 2012 Phys. Rev. B 86 121105
[10] Wang W S, Li Z Z, Xiang Y Y and Wang Q H 2013 Phys. Rev. B 87 115135
[11] Ye L, Kang M, Liu J, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature 555 638
[12] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald L W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M and Toberer E S 2019 Phys. Rev. Mater. 3 094407
[13] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J F and Wilson S D 2020 Phys. Rev. Lett. 125 247002
[14] Yin Q W, Tu Z J, Gong C S, Fu Y, Yan S H and Lei H C 2021 Chin. Phys. Lett. 38 037403
[15] Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M X, Wang Z Q, Balents L, Wilson S D and Zeljkovic I 2021 Nature 599 216
[16] Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, Xu G, Guguchia Z, He J, Hossain M S, Liu X, Ruff J, Kautzsch L, Zhang S S, Chang G, Belopolski I, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Wang Z, Thomale R, Neupert T, Wilson S D and Hasan M Z 2021 Nat. Mater. 20 1353
[17] Bai X C, Wu W F, Wang H Y, Quan Y M, Wang X, Zeng Z and Zou L J 2022 New J. Phys. 24 123016
[18] Li H, Zhang T T, Yilmaz T, Pai Y Y, Marvinney C E, Said A, Yin Q W, Gong C S, Tu Z J, Vescovo E, Nelson C S, Moore R G, Murakami S, Lei H C, Lee H N, Lawrie B J and Miao H 2021 Phys. Rev. X 11 031050
[19] Liang Z W, Hou X Y, Zhang F, Ma W R, Wu P, Zhang Z Y, Yu F H, Ying J J, Jiang K, Shan L, Wang Z Y and Chen X H 2021 Phys. Rev. X 11 031026
[20] Ortiz B R, Teicher S M L, Kautzsch L, Sarte P M, Ratcliff N, Harter J, Ruff J P C, Seshadri R and Wilson S D 2021 Phys. Rev. X 11 041030
[21] Chen H, Yang H T, Hu B, Zhao Z, Yuan J, Xing Y Q, Qian G J, Huang Z H, Li G, Ye Y H, Ma S, Ni S L, Zhang H, Yin Q W, Gong C S, Tu Z J, Lei H C, Tan H X, Zhou S, Shen C M, Dong X L, Yan B H, Wang Z Q and Gao H J 2021 Nature 599 222
[22] Song Y, Ying T, Chen X, Han X, Wu X, Schnyder A P, Huang Y, Guo J G and Chen X 2021 Phys. Rev. Lett. 127 237001
[23] Qian T, Christensen M H, Hu C W, Saha A, Andersen B M, Fernandes R M, Birol T and Ni N 2021 Phys. Rev. B 104 144506
[24] Yu F H, Ma D H, Zhuo W Z, Liu S Q, Wen X K, Lei B, Ying J J and Chen X H 2021 Nat. Commun. 12 3645
[25] Wang Q, Kong P, Shi W, Pei C, Wen C, Gao L, Zhao Y, Yin Q, Wu Y and Li G 2021 Adv. Mater. 33 2102813
[26] Denner M M, Thomale R and Neupert T 2021 Phys. Rev. Lett. 127 217601
[27] Lin Y P and Nandkishore R M 2021 Phys. Rev. B 104 045122
[28] Wang C, Liu S, Jeon H and Cho J H 2022 Phys. Rev. B 105 045135
[29] Neupert T, Denner M M, Yin J X, Thomale R and Hasan M Z 2022 Nat. Phys. 18 137
[30] Kang M, Fang S, Kim J K, Ortiz B R, Ryu S H, Kim J, Yoo J, Sangiovanni G, Di Sante D, Park B G, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Wilson S D, Park J H and Comin R 2022 Nat. Phys. 18 301
[31] Wu S, Ortiz B R, Tan H, Wilson S D, Yan B, Birol T and Blumberg G 2022 Phys. Rev. B 105 155106
[32] Ferrari F, Becca F and Valentí R 2022 Phys. Rev. B 106 L081107
[33] Feng X, Jiang K, Wang Z and Hu J 2021 Sci. Bull. 66 1384
[34] Wang Z W, Jiang Y X, Yin J X, Li Y K, Wang G Y, Huang H L, Shao S, Liu J J, Zhu P, Shumiya N, Hossain M S, Liu H X, Shi Y G, Duan J X, Li X, Chang G Q, Dai P C, Ye Z J, Xu G, Wang Y C, Zheng H, Jia J F, Hasan M Z and Yao Y G 2021 Phys. Rev. B 104 075148
[35] Shumiya N, Hossain M S, Yin J X, Jiang Y X, Ortiz B R, Liu H X, Shi Y G, Yin Q W, Le H C, Zhan S T, Chang G Q, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X, Guguchia Z, Wilson S D and Hasan M Z 2021 Phys. Rev. B 104 035131
[36] Nie L, Sun K, Ma W, Song D, Zheng L, Liang Z, Wu P, Yu F, Li J, Shan M, Zhao D, Li S, Kang B, Wu Z, Zhou Y, Liu K, Xiang Z, Ying J, Wang Z, Wu T and Chen X 2022 Nature 604 59
[37] Li H, Zhao H, Ortiz B R, Park T, Ye M, Balents L, Wang Z, Wilson S D and Zeljkovic I 2022 Nat. Phys. 18 265
[38] Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J and Chen X H 2021 Phys. Rev. B 104 L041103
[39] Yang S Y, Wang Y J, Ortiz B R, Liu D F, Gayles J, Derunova E, Gonzalez-Hernandez R, Smejkal L, Chen Y L, Parkin S S P, Wilson S D, Toberer E S, McQueen T and Ali M N 2020 Sci. Adv. 6 eabb6003
[40] Cho S, Ma H, Xia W, Yang Y, Liu Z, Huang Z, Jiang Z, Lu X, Liu J, Liu Z, Li J, Wang J, Liu Y, Jia J, Guo Y, Liu J and Shen D 2021 Phys. Rev. Lett. 127 236401
[41] Kato T, Li Y, Kawakami T, Liu M, Nakayama K, Wang Z, Moriya A, Tanaka K, Takahashi T, Yao Y and Sato T 2022 Commun. Mater. 3 30
[42] Zhou X X, Li Y K, Fan X W, Hao J H, Dai Y M, Wang Z W, Yao Y G and Wen H H 2021 Phys. Rev. B 104 L041101
[43] Lou R, Fedorov A, Yin Q, Kuibarov A, Tu Z, Gong C, Schwier E F, Buchner B, Lei H and Borisenko S 2022 Phys. Rev. Lett. 128 036402
[44] Tan H, Liu Y, Wang Z and Yan B 2021 Phys. Rev. Lett. 127 046401
[45] Xie Y, Li Y, Bourges P, Ivanov A, Ye Z, Yin J X, Hasan M Z, Luo A, Yao Y, Wang Z, Xu G and Dai P 2022 Phys. Rev. B 105 L140501
[46] Luo H, Gao Q, Liu H, Gu Y, Wu D, Yi C, Jia J, Wu S, Luo X, Xu Y, Zhao L, Wang Q, Mao H, Liu G, Zhu Z, Shi Y, Jiang K, Hu J, Xu Z and Zhou X J 2022 Nat. Commun. 13 273
[47] Wulferding D, Lee S, Choi Y, Yin Q, Tu Z, Gong C, Lei H, Yousuf S, Song J, Lee H, Park T and Choi K Y 2022 Phys. Rev. Res. 4 023215
[48] Mertz T, Wunderlich P, Bhattacharyya S, Ferrari F and Valentí R 2022 npj Comput. Mater. 8 66
[49] Feng X, Zhang Y, Jiang K and Hu J 2021 Phys. Rev. B 104 165136
[50] Park T, Ye M and Balents L 2021 Phys. Rev. B 104 035142
[51] Ferhat K and Ralko A 2014 Phys. Rev. B 89 155141
[52] Yu J, Xu Z, Xiao K, Yuan Y, Yin Q, Hu Z, Gong C, Guo Y, Tu Z, Tang P, Lei H, Xue Q K and Li W 2022 Nano Lett. 22 918
[53] Wang Z, Ma S, Zhang Y, Yang H, Zhao Z, Ou Y, Zhu Y, Ni S, Lu Z, Chen H, Jiang K, Yu L, Zhang Y, Dong X, Hu J, Gao H J and Zhao Z 2021 arXiv: 2104.05556v1
[54] Li Q Y, Lv Y Y, Xu Y J, Zhu L, Zhao W M, Chen Y and Li S C 2022 Chin. Phys. B 31 066802
[55] Wen J, Rüegg A, Wang C C J and Fiete G A 2010 Phys. Rev. B 82 075125
[56] Rüegg A and Fiete G A 2011 Phys. Rev. B 83 165118
[57] O'Brien A, Pollmann F and Fulde P 2010 Phys. Rev. B 81 235115
[58] Nishimoto S, Nakamura M, O'Brien A and Fulde P 2010 Phys. Rev. Lett. 104 196401
[1] Electronic states of domain walls in commensurate charge density wave ground state and mosaic phase in 1T-TaS2
Yan Li(李彦), Yao Xiao(肖遥), Qi Zheng(郑琦), Xiao Lin(林晓), Li Huang(黄立), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(7): 077101.
[2] Effects of atomic corrugations on electronic structures in Pb1-xBix thin films
Pengju Li(李鹏举), Kun Xie(谢鹍), Yumin Xia(夏玉敏), Desheng Cai(蔡德胜), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2023, 32(6): 066101.
[3] Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy
Zilu Wang(王子禄), Haoyu Dong(董皓宇), Weichang Zhou(周伟昌), Zhihai Cheng(程志海), and Shancai Wang(王善才). Chin. Phys. B, 2023, 32(6): 067103.
[4] Gate-controlled localization to delocalization transition of flat band wavefunction in twisted monolayer-bilayer graphene
Siyu Li(李思宇), Zhengwen Wang(王政文), Yucheng Xue(薛禹承), Lu Cao(曹路), Kenji Watanabe, Takashi Taniguchi, Hongjun Gao(高鸿钧), and Jinhai Mao(毛金海). Chin. Phys. B, 2023, 32(6): 067304.
[5] Er intercalation and its impact on transport properties of epitaxial graphene
Mingmin Yang(杨明敏), Yong Duan(端勇), Wenxia Kong(孔雯霞), Jinzhe Zhang(章晋哲), Jianxin Wang(王剑心), and Qun Cai(蔡群). Chin. Phys. B, 2023, 32(6): 066103.
[6] Morphological features and nanostructures generated during SiC graphitization process
Wen-Xia Kong(孔雯霞), Yong Duan(端勇), Jin-Zhe Zhang(章晋哲),Jian-Xin Wang(王剑心), and Qun Cai(蔡群). Chin. Phys. B, 2023, 32(6): 068103.
[7] Quasi-one-dimensional characters in topological semimetal TaNiTe5
Ni Ma(马妮), De-Yang Wang(王德阳), Ben-Rui Huang(黄本锐), Kai-Yi Li(李凯仪), Jing-Peng Song(宋靖鹏), Jian-Zhong Liu(刘建忠), Hong-Ping Mei(梅红萍), Mao Ye(叶茂), and Ang Li(李昂). Chin. Phys. B, 2023, 32(5): 056801.
[8] Anisotropy of 2H-NbSe2 in the superconducting and charge density wave states
Chi Zhang(张驰), Shan Qiao(乔山), Hong Xiao(肖宏), and Tao Hu(胡涛). Chin. Phys. B, 2023, 32(4): 047201.
[9] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[10] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[11] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[12] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[13] Charge density wave states in phase-engineered monolayer VTe2
Zhi-Li Zhu(朱知力), Zhong-Liu Liu(刘中流), Xu Wu(武旭), Xuan-Yi Li(李轩熠), Jin-An Shi(时金安), Chen Liu(刘晨), Guo-Jian Qian(钱国健), Qi Zheng(郑琦), Li Huang(黄立), Xiao Lin(林晓), Jia-Ou Wang(王嘉欧), Hui Chen(陈辉), Wu Zhou(周武), Jia-Tao Sun(孙家涛), Ye-Liang Wang(王业亮), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(7): 077101.
[14] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[15] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
No Suggested Reading articles found!