Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 027101    DOI: 10.1088/1674-1056/ad0291
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Band structures of strained kagome lattices

Luting Xu(徐露婷)1,2 and Fan Yang(杨帆)1,2,†
1 Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, Tianjin 300354, China;
2 Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, Tianjin University, Tianjin 300354, China
Abstract  Materials with kagome lattices have attracted significant research attention due to their nontrivial features in energy bands. We theoretically investigate the evolution of electronic band structures of kagome lattices in response to uniaxial strain using both a tight-binding model and an antidot model based on a periodic muffin-tin potential. It is found that the Dirac points move with applied strain. Furthermore, the flat band of unstrained kagome lattices is found to develop into a highly anisotropic shape under a stretching strain along y direction, forming a partially flat band with a region dispersionless along ky direction while dispersive along kx direction. Our results shed light on the possibility of engineering the electronic band structures of kagome materials by mechanical strain.
Keywords:  kagome lattice      strain      band structure engineering  
Received:  19 August 2023      Revised:  08 October 2023      Accepted manuscript online:  12 October 2023
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  68.65.Cd (Superlattices)  
  73.21.Cd (Superlattices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904261 and 11904259).
Corresponding Authors:  Fan Yang     E-mail:  fanyangphys@tju.edu.cn

Cite this article: 

Luting Xu(徐露婷) and Fan Yang(杨帆) Band structures of strained kagome lattices 2024 Chin. Phys. B 33 027101

[1] Syôzi I 1951 Prog. Theor. Phys. 6 306
[2] Yin J, Zhang S S, Li H, et al. 2018 Nature 562 91
[3] Yin J, Zhang S S, Chang G, et al. 2019 Nat. Phys. 15 443
[4] Lee S H, Kikuchi H, Qiu Y, Lake B, Huang Q, Habicht K and Kiefer K 2007 Nat. Mater. 6 853
[5] Balents L 2010 Nature 464 199
[6] Yan S, Huse D A and White S R 2011 Science 332 1173
[7] Jiang H, Wang Z and Balents L 2012 Nat. Phys. 8 902
[8] Han T, Helton J S, Chu S, Nocera D G, Rodriguez-Rivera J A, Broholm C and Lee Y S 2012 Nature 492 406
[9] Norman M R 2016 Rev. Mod. Phys. 88 041002
[10] Liao H J, Xie Z Y, Chen J, Liu Z Y, Xie H D, Huang R Z, Normand B and Xiang T 2017 Phys. Rev. Lett. 118 137202
[11] Guo H M and Franz M 2009 Phys. Rev. B 80 113102
[12] Chisnell R, Helton J S, Freedman D E, Singh D K, Bewley R I, Nocera D G and Lee Y S 2015 Phys. Rev. Lett. 115 147201
[13] Yin J, Lian B and Hasan M Z 2022 Nature 612 647
[14] Keimer B, Kivelson S A, Norman M R, Uchida S and Zaanen J 2015 Nature 518 179
[15] Jo G, Guzman J, Thomas C K, Hosur P, Vishwanath A and Stamper-Kurn D M 2012 Phys. Rev. Lett. 108 045305
[16] Leung T, Schwarz M N, Chang S, Brown C D, Unnikrishnan G and Stamper-Kurn D 2020 Phys. Rev. Lett. 125 133001
[17] Hassan A E, Kunst F K, Moritz A, Andler G, Bergholtz E J and Bourennane M 2019 Nat. Photon. 13 697
[18] Lin Y, Chen C, Kumar N, Yeh T, Lin T, Blügel S, Bihlmayer G and Hsu P 2022 Nano Lett. 22 8475
[19] Roldán R, Castellanos-Gomez A, Cappelluti E and Guinea F 2015 J. Phys.: Condens. Matter Phys. 27 313201
[20] Dai Z, Liu L and Zhang Z 2019 Adv. Mater. 31 1805417
[21] Peng Z, Chen X, Fan Y, Srolovitz D J and Lei D 2020 Light Sci. Appl. 9 190
[22] Pereira V M, Castro Neto A H and Peres N M R 2009 Phys. Rev. B 80 045401
[23] Feilhauer J, Apel W and Schweitzer L 2015 Phys. Rev. B 92 245424
[24] Shioya H, Russo S, Yamamoto M, Craciun M F and Tarucha S 2015 Nano Lett. 15 7943
[25] Cao K, Feng S, Han Y, Gao L, Hue Ly T, Xu Z and Lu Y 2020 Nat. Commun. 11 284
[26] Paulson S, Falvo M R, Snider N, Helser A, Hudson T, Seeger A, Taylor R M, Superfine R and Washburn S 1999 Appl. Phys. Lett. 75 2936
[27] Minot E D, Yaish Y, Sazonova V, Park J, Brink M and McEuen P L 2003 Phys. Rev. Lett. 90 156401
[28] Dmitrović S, Milosevic I, Damnjanovic M and Vukovic T 2015 J. Phys. Chem. C 119 13922
[29] Conley H J, Wang B, Ziegler J I, Haglund Jr R F, Pantelides S T and Bolotin K I 2013 Nano Lett. 13 3626
[30] He K, Poole C, Mak K F and Shan J 2013 Nano Lett. 13 2931
[31] Zhu C R, Wang G, Liu B L, Marie X, Qiao X F, Zhang X, Wu X X, Fan H, Tan P H and Amand T 2013 Phys. Rev. B 88 121301
[32] Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R, Ager J W, Guo J and Javey A 2014 Nano Lett. 14 4592
[33] Parto K, Azzam S I, Banerjee K and Moody G 2021 Nat. Commun. 12 3585
[34] Liu T 2020 Phys. Rev. B 102 045151
[35] Zhao X, Wang Z, Chen J and Wang B 2022 Results Phys. 35 105360
[36] Nayga M M and Vojta M 2022 Phys. Rev. B 105 094426
[37] Jiang W, Kang M, Huang H, Xu H, Low T and Liu F 2019 Phys. Rev. B 99 125131
[38] Zhao X, Wang Z, Chen J and Wang B 2022 Results Phys. 35 105360
[39] Bergman D L, Wu C and Balents L 2008 Phys. Rev. B 78 125104
[40] Park C and Louie S G 2009 Nano Lett. 9 1793
[41] Gibertini M, Singha A, Pellegrini V, Polini M, Vignale G, Pinczuk A, Pfeiffer L N and West K W 2009 Phys. Rev. B 79 241406
[42] Tadjine A, Allan G and Delerue C 2016 Phys. Rev. B 94 075441
[43] Li S, Qiu W and Gao J 2016 Nanoscale 8 12747
[1] Effects of Mg-doping temperature on the structural and electrical properties of nonpolar a-plane p-type GaN films
Kai Chen(陈凯), Jianguo Zhao(赵见国), Yu Ding(丁宇), Wenxiao Hu(胡文晓), Bin Liu(刘斌), Tao Tao(陶涛), Zhe Zhuang(庄喆), Yu Yan(严羽), Zili Xie(谢自力), Jianhua Chang(常建华), Rong Zhang(张荣), and Youliao Zheng(郑有炓). Chin. Phys. B, 2024, 33(1): 016801.
[2] Design and simulation of an accelerometer based on NV center spin—strain coupling
Lu-Min Ji(季鲁敏), Li-Ye Zhao(赵立业), and Yu-Hai Wang(王裕海). Chin. Phys. B, 2024, 33(1): 017301.
[3] Distinct behavior of electronic structure under uniaxial strain in BaFe2As2
Jiajun Li(李佳俊), Giao Ngoc Phan, Xingyu Wang(王兴玉), Fazhi Yang(杨发枝), Quanxin Hu(胡全欣), Ke Jia(贾可), Jin Zhao(赵金), Wenyao Liu(刘文尧), Renjie Zhang(张任杰), Youguo Shi(石友国), Shiliang Li(李世亮), Tian Qian(钱天), and Hong Ding(丁洪). Chin. Phys. B, 2024, 33(1): 017401.
[4] Valley filtering and valley-polarized collective modes in bulk graphene monolayers
Jian-Long Zheng(郑建龙) and Feng Zhai(翟峰). Chin. Phys. B, 2024, 33(1): 017203.
[5] Out-of-plane weak ferromagnetism at room temperaturein lattice-distortion non-collinear antiferromagnet of single-crystal Mn3Sn
Bo-Xi Zhang(张博熙), Ping Song(宋平), Shan-Shan Deng(邓珊珊), Li Lou(娄理), and Sen Yao(姚森). Chin. Phys. B, 2023, 32(8): 087502.
[6] Comparison of sleep timing of people with different chronotypes affected by modern lifestyle
Ying Li(李莹), Ji-Chen Guo(郭纪辰), and Xue Wang(王雪). Chin. Phys. B, 2023, 32(6): 068702.
[7] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[8] Strain effects on Li+ diffusion in solid electrolyte interphases: A molecular dynamics study
Xiang Ji(姬祥) and Junqian Zhang(张俊乾). Chin. Phys. B, 2023, 32(6): 066601.
[9] A spin-based magnetic scanning microscope for in-situ strain tuning of soft matter
Zhe Ding(丁哲), Yumeng Sun(孙豫蒙), Mengqi Wang(王孟祺), Pei Yu(余佩), Ningchong Zheng(郑宁冲), Yipeng Zang(臧一鹏), Pengfei Wang(王鹏飞), Ya Wang(王亚), Yuefeng Nie(聂越峰), Fazhan Shi(石发展), and Jiangfeng Du(杜江峰). Chin. Phys. B, 2023, 32(5): 057504.
[10] Spin reorientation in easy-plane kagome ferromagnet Li9Cr3(P2O7)3(PO4)2
Yuanhao Dong(董元浩), Ying Fu(付盈), Yixuan Liu(刘以轩), Zhanyang Hao(郝占阳), Le Wang(王乐), Cai Liu(刘才), Ke Deng(邓可), and Jiawei Mei(梅佳伟). Chin. Phys. B, 2023, 32(5): 057506.
[11] Stress effect on lattice thermal conductivity of anode material NiNb2O6 for lithium-ion batteries
Ao Chen(陈奥), Hua Tong(童话), Cheng-Wei Wu(吴成伟), Guofeng Xie(谢国锋), Zhong-Xiang Xie(谢忠祥), Chang-Qing Xiang(向长青), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2023, 32(5): 058201.
[12] Continuous modulation of charge-spin conversion by electric field in Pt/Co2FeSi/Pb(Mg1/3Nb2/3)O3-Pb0.7Ti0.3O3 heterostructures
Yibing Zhao(赵逸冰), Xiaoxiao Fang(方晓筱), Zhirui Wang(王志睿), Miao Cheng(程淼), Yongjia Tan(谭永嘉), Dongxiong Wei(韦东雄), Changjun Jiang(蒋长军), and Jinli Yao(幺金丽). Chin. Phys. B, 2023, 32(5): 056701.
[13] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[14] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[15] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
No Suggested Reading articles found!