CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Band structures of strained kagome lattices |
Luting Xu(徐露婷)1,2 and Fan Yang(杨帆)1,2,† |
1 Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, Tianjin 300354, China; 2 Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, Tianjin University, Tianjin 300354, China |
|
|
Abstract Materials with kagome lattices have attracted significant research attention due to their nontrivial features in energy bands. We theoretically investigate the evolution of electronic band structures of kagome lattices in response to uniaxial strain using both a tight-binding model and an antidot model based on a periodic muffin-tin potential. It is found that the Dirac points move with applied strain. Furthermore, the flat band of unstrained kagome lattices is found to develop into a highly anisotropic shape under a stretching strain along y direction, forming a partially flat band with a region dispersionless along ky direction while dispersive along kx direction. Our results shed light on the possibility of engineering the electronic band structures of kagome materials by mechanical strain.
|
Received: 19 August 2023
Revised: 08 October 2023
Accepted manuscript online: 12 October 2023
|
PACS:
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
68.65.Cd
|
(Superlattices)
|
|
73.21.Cd
|
(Superlattices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904261 and 11904259). |
Corresponding Authors:
Fan Yang
E-mail: fanyangphys@tju.edu.cn
|
Cite this article:
Luting Xu(徐露婷) and Fan Yang(杨帆) Band structures of strained kagome lattices 2024 Chin. Phys. B 33 027101
|
[1] Syôzi I 1951 Prog. Theor. Phys. 6 306 [2] Yin J, Zhang S S, Li H, et al. 2018 Nature 562 91 [3] Yin J, Zhang S S, Chang G, et al. 2019 Nat. Phys. 15 443 [4] Lee S H, Kikuchi H, Qiu Y, Lake B, Huang Q, Habicht K and Kiefer K 2007 Nat. Mater. 6 853 [5] Balents L 2010 Nature 464 199 [6] Yan S, Huse D A and White S R 2011 Science 332 1173 [7] Jiang H, Wang Z and Balents L 2012 Nat. Phys. 8 902 [8] Han T, Helton J S, Chu S, Nocera D G, Rodriguez-Rivera J A, Broholm C and Lee Y S 2012 Nature 492 406 [9] Norman M R 2016 Rev. Mod. Phys. 88 041002 [10] Liao H J, Xie Z Y, Chen J, Liu Z Y, Xie H D, Huang R Z, Normand B and Xiang T 2017 Phys. Rev. Lett. 118 137202 [11] Guo H M and Franz M 2009 Phys. Rev. B 80 113102 [12] Chisnell R, Helton J S, Freedman D E, Singh D K, Bewley R I, Nocera D G and Lee Y S 2015 Phys. Rev. Lett. 115 147201 [13] Yin J, Lian B and Hasan M Z 2022 Nature 612 647 [14] Keimer B, Kivelson S A, Norman M R, Uchida S and Zaanen J 2015 Nature 518 179 [15] Jo G, Guzman J, Thomas C K, Hosur P, Vishwanath A and Stamper-Kurn D M 2012 Phys. Rev. Lett. 108 045305 [16] Leung T, Schwarz M N, Chang S, Brown C D, Unnikrishnan G and Stamper-Kurn D 2020 Phys. Rev. Lett. 125 133001 [17] Hassan A E, Kunst F K, Moritz A, Andler G, Bergholtz E J and Bourennane M 2019 Nat. Photon. 13 697 [18] Lin Y, Chen C, Kumar N, Yeh T, Lin T, Blügel S, Bihlmayer G and Hsu P 2022 Nano Lett. 22 8475 [19] Roldán R, Castellanos-Gomez A, Cappelluti E and Guinea F 2015 J. Phys.: Condens. Matter Phys. 27 313201 [20] Dai Z, Liu L and Zhang Z 2019 Adv. Mater. 31 1805417 [21] Peng Z, Chen X, Fan Y, Srolovitz D J and Lei D 2020 Light Sci. Appl. 9 190 [22] Pereira V M, Castro Neto A H and Peres N M R 2009 Phys. Rev. B 80 045401 [23] Feilhauer J, Apel W and Schweitzer L 2015 Phys. Rev. B 92 245424 [24] Shioya H, Russo S, Yamamoto M, Craciun M F and Tarucha S 2015 Nano Lett. 15 7943 [25] Cao K, Feng S, Han Y, Gao L, Hue Ly T, Xu Z and Lu Y 2020 Nat. Commun. 11 284 [26] Paulson S, Falvo M R, Snider N, Helser A, Hudson T, Seeger A, Taylor R M, Superfine R and Washburn S 1999 Appl. Phys. Lett. 75 2936 [27] Minot E D, Yaish Y, Sazonova V, Park J, Brink M and McEuen P L 2003 Phys. Rev. Lett. 90 156401 [28] Dmitrović S, Milosevic I, Damnjanovic M and Vukovic T 2015 J. Phys. Chem. C 119 13922 [29] Conley H J, Wang B, Ziegler J I, Haglund Jr R F, Pantelides S T and Bolotin K I 2013 Nano Lett. 13 3626 [30] He K, Poole C, Mak K F and Shan J 2013 Nano Lett. 13 2931 [31] Zhu C R, Wang G, Liu B L, Marie X, Qiao X F, Zhang X, Wu X X, Fan H, Tan P H and Amand T 2013 Phys. Rev. B 88 121301 [32] Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R, Ager J W, Guo J and Javey A 2014 Nano Lett. 14 4592 [33] Parto K, Azzam S I, Banerjee K and Moody G 2021 Nat. Commun. 12 3585 [34] Liu T 2020 Phys. Rev. B 102 045151 [35] Zhao X, Wang Z, Chen J and Wang B 2022 Results Phys. 35 105360 [36] Nayga M M and Vojta M 2022 Phys. Rev. B 105 094426 [37] Jiang W, Kang M, Huang H, Xu H, Low T and Liu F 2019 Phys. Rev. B 99 125131 [38] Zhao X, Wang Z, Chen J and Wang B 2022 Results Phys. 35 105360 [39] Bergman D L, Wu C and Balents L 2008 Phys. Rev. B 78 125104 [40] Park C and Louie S G 2009 Nano Lett. 9 1793 [41] Gibertini M, Singha A, Pellegrini V, Polini M, Vignale G, Pinczuk A, Pfeiffer L N and West K W 2009 Phys. Rev. B 79 241406 [42] Tadjine A, Allan G and Delerue C 2016 Phys. Rev. B 94 075441 [43] Li S, Qiu W and Gao J 2016 Nanoscale 8 12747 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|