Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 077404    DOI: 10.1088/1674-1056/ad51f9
RAPID COMMUNICATION Prev   Next  

Absence of BCS-BEC crossover in FeSe0.45Te0.55 superconductor

Junjie Jia(贾俊杰)1,2, Yadong Gu(谷亚东)1,2, Chaohui Yin(殷超辉)1,2, Yingjie Shu(束英杰)1,2, Yiwen Chen(陈逸雯)1,2, Jumin Shi(史聚民)1,2, Xing Zhang(张杏)1,2, Hao Chen(陈浩)1,2, Taimin Miao(苗泰民)1,2, Xiaolin Ren(任晓琳)1,2, Bo Liang(梁波)1,2, Wenpei Zhu(朱文培)1,2, Neng Cai(蔡能)1,2, Fengfeng Zhang(张丰丰)4, Shenjin Zhang(张申金)4, Feng Yang(杨峰)4, Zhimin Wang(王志敏)4, Qinjun Peng(彭钦军)4, Zuyan Xu(许祖彦)4, Hanqing Mao(毛寒青)1,2,3, Guodong Liu(刘国东)1,2,3, Zhian Ren(任治安)1,2,3, Lin Zhao(赵林)1,2,3,†, and Xing-Jiang Zhou(周兴江)1,2,3,‡
1 National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China;
4 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Abstract  In iron-based superconductor Fe(Se,Te), a flat band-like feature near the Fermi level was observed around the Brillouin zone center in the superconducting state. It is under debate whether this is the evidence on the presence of the BCS-BEC [Bardeen-Cooper-Schrieffer (BCS), Bose-Einstein condensation (BEC)] crossover in the superconductor. High-resolution laser-based angle-resolved photoemission measurements are carried out on high quality single crystals of FeSe$_{0.45}$Te$_{0.55}$ superconductor to address the issue. By employing different polarization geometries, we have resolved and isolated the d$_{yz}$ band and the topological surface band, making it possible to study their superconducting behaviors separately. The d$_{yz}$ band alone does not form a flat band-like feature in the superconducting state and the measured dispersion can be well described by the BCS picture. We find that the flat band-like feature is formed from the combination of the d$_{yz}$ band and the topological surface state band in the superconducting state. These results reveal the origin of the flat band-like feature and rule out the presence of BCS-BEC crossover in Fe(Se,Te) superconductor.
Keywords:  FeSe$_{0.45}$Te$_{0.55}$      ARPES      electronic structure      superconducting gap      BCS-BEC crossover  
Received:  24 May 2024      Revised:  30 May 2024      Accepted manuscript online:  30 May 2024
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.20.Fg (BCS theory and its development)  
  74.20.Mn (Nonconventional mechanisms)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Projects supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1401800, 2022YFA1604200, 2022YFA1403900, and 2023YFA1406000), the National Natural Science Foundation of China (Grant Nos. 12488201, 12374066, 12074411, and 12374154), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos. XDB25000000 and XDB33000000), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301800), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. Y2021006), and the Synergetic Extreme Condition User Facility (SECUF).
Corresponding Authors:  Lin Zhao, Xing-Jiang Zhou     E-mail:  lzhao@iphy.ac.cn;XJZhou@iphy.ac.cn

Cite this article: 

Junjie Jia(贾俊杰), Yadong Gu(谷亚东), Chaohui Yin(殷超辉), Yingjie Shu(束英杰), Yiwen Chen(陈逸雯), Jumin Shi(史聚民), Xing Zhang(张杏), Hao Chen(陈浩), Taimin Miao(苗泰民), Xiaolin Ren(任晓琳), Bo Liang(梁波), Wenpei Zhu(朱文培), Neng Cai(蔡能), Fengfeng Zhang(张丰丰), Shenjin Zhang(张申金), Feng Yang(杨峰), Zhimin Wang(王志敏), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Hanqing Mao(毛寒青), Guodong Liu(刘国东), Zhian Ren(任治安), Lin Zhao(赵林), and Xing-Jiang Zhou(周兴江) Absence of BCS-BEC crossover in FeSe0.45Te0.55 superconductor 2024 Chin. Phys. B 33 077404

[1] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. J. Arch. 108 1175
[2] Dalfovo F and Giorgini S 1999 Rev. Mod. Phys. 71 463
[3] Stringari S, Pitaevskii L P and Giorgini S 2008 Rev. Mod. Phys. 80 1215
[4] Eagles D M 1969 Phys. Rev. Jour. Arch. 186 456
[5] Leggett A J 1980 Proceedings of the XVIth Karpacz Winter School of Theoretical Physics, Karpacz, Poland Springer-Verlag pp. 13-27
[6] Nozieres P and Schmitt-Rink S 1985 J. Low Temp. Phys. 59 195
[7] Chen Q J, Stajic J, Tan S and Levin K 2005 Phys. Rep. 412 1-88
[8] Randeria M and Taylor E 2014 Ann. Rev. Con. Matter Phys. 5 209
[9] Chen Q J, Wang Z Q, Boyack R, Yang S L and Levin K 2024 Rev. Mod. Phys. 96 025002
[10] Lubashevsky Y, Lahoud E, Chashka K, Podolsky D and Kanigel A 2012 Nat. Phys. 8 309
[11] Kasahara S, Watashige T, Hanaguri T, Kohsaka Y, Yamashita T, Shimoyama Y, Mizukami Y, Endo R, Ikeda H, Aoyama K, Terashima T, Uji S, Wolf T, Löhneysen H, Shibauchi T and Matsuda Y 2014 Proc. Natl. Acad. Sci. USA 111 16309
[12] Okazaki K, Ito Y, Ota Y, Kotani Y, Shimojima T, Kiss T, Watanabe S, Chen C T, Niitaka S, Hanaguri T, Takagi H, Chainani A and Shin S 2014 Sci. Rep. 4 4109
[13] Rinott S, Chashka K B, Ribak A, Rienks E D L, Taleb-Ibrahimi A, Fevre P L, Bertran F, Randeria M and Kanigel A 2017 Sci. Adv. 3 e1602372
[14] Hashimoto T, Ota Y, Tsuzuki A, Nagashima T, Fukushima T, Kasahara S, Matsuda Y, Matsuura K, Mizukami Y, Shibauchi S, Shin S and Okazaki K 2020 Sci. Adv. 6 eabb9052
[15] Gu Y D, Zhou M H, Zhang M D, Wu Y W, Ruan B B, Hou X Y, Zhang F, Jiang P J, Yang Q S, Li G, Ma M W, Chen G F, Shan L and Ren Z A 2022 Sci. China Mater. 65 2472
[16] Zhou X J, He S L, Liu G D, Zhao Lin, Yu L and Zhang W T 2018 Rep. Pro. Phys. 81 062101
[17] Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z J, Wen J S, Gu G D, Ding H and Shin S 2018 Science 360 182
[18] Zhang P, Wang Z J, Wu X X, Yaji K, Ishida Y, Kohama Y, Dai G Y, Sun Y, Bareille C, Kuroda K, 2019 Nat. Phys. 15 41
[1] Experimental observation of Fermi-level flat band in novel kagome metal CeNi5
Xue-Zhi Chen(陈学智), Le Wang(王乐), Shuai Zhang(张帅), Ren-Jie Zhang(张任杰), Yi-Wei Cheng(程以伟), Yu-Dong Hu(胡裕栋), Cheng-Nuo Meng(孟承诺), Zheng-Tai Liu(刘正太), Bai-Qing Lv(吕佰晴), and Yao-Bo Huang(黄耀波). Chin. Phys. B, 2024, 33(8): 087402.
[2] Negligible normal fluid in superconducting state of heavily overdoped Bi2Sr2CaCu2O8+δ detected by ultra-low temperature angle-resolved photoemission spectroscopy
Chaohui Yin(殷超辉), Qinghong Wang(汪清泓), Yuyang Xie(解于洋), Yiwen Chen(陈逸雯), Junhao Liu(刘俊豪), Jiangang Yang(杨鉴刚), Junjie Jia(贾俊杰), Xing Zhang(张杏), Wenkai Lv(吕文凯), Hongtao Yan(闫宏涛), Hongtao Rong(戎洪涛), Shenjin Zhang(张申金), Zhimin Wang(王志敏), Nan Zong(宗楠), Lijuan Liu(刘丽娟), Rukang Li(李如康), Xiaoyang Wang(王晓洋), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Guodong Liu(刘国东), Hanqing Mao(毛寒青), Lin Zhao(赵林), Xintong Li(李昕彤), and Xingjiang Zhou(周兴江). Chin. Phys. B, 2024, 33(7): 077405.
[3] Wafer-scale 30° twisted bilayer graphene epitaxially grown on Cu0.75Ni0.25 (111)
Peng-Cheng Ma(马鹏程), Ao Zhang(张翱), Hong-Run Zhen(甄洪润), Zhi-Cheng Jiang(江志诚), Yi-Chen Yang(杨逸尘), Jian-Yang Ding(丁建阳), Zheng-Tai Liu(刘正太), Ji-Shan Liu(刘吉山), Da-Wei Shen(沈大伟), Qing-Kai Yu(于庆凯), Feng Liu(刘丰), Xue-Fu Zhang(张学富), and Zhong-Hao Liu(刘中灏). Chin. Phys. B, 2024, 33(6): 066101.
[4] Electronic structure and effective mass of pristine and Cl-doped CsPbBr3
Zhiyuan Wei(魏志远), Yu-Hao Wei(魏愉昊), Shendong Xu(徐申东), Shuting Peng(彭舒婷), Makoto Hashimoto, Donghui Lu(路东辉), Xu Pan(潘旭), Min-Quan Kuang(匡泯泉), Zhengguo Xiao(肖正国), and Junfeng He(何俊峰). Chin. Phys. B, 2024, 33(5): 057403.
[5] Optical manipulation of the topological phase in ZrTe5 revealed by time- and angle-resolved photoemission
Chaozhi Huang(黄超之), Chengyang Xu(徐骋洋), Fengfeng Zhu(朱锋锋), Shaofeng Duan(段绍峰), Jianzhe Liu(刘见喆), Lingxiao Gu(顾凌霄), Shichong Wang(王石崇), Haoran Liu(刘浩然), Dong Qian(钱冬), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2024, 33(1): 017901.
[6] Geometries and electronic structures of ZrnCu(n =2-12) clusters: A joint machine-learning potential density functional theory investigation
Yizhi Wang(王一志), Xiuhua Cui(崔秀花), Jing Liu(刘静), Qun Jing(井群), Haiming Duan(段海明), and Haibin Cao(曹海宾). Chin. Phys. B, 2024, 33(1): 016109.
[7] Electronic structure study of the charge-density-wave Kondo lattice CeTe3
Bo Wang(王博), Rui Zhou(周锐), Xuebing Luo(罗学兵), Yun Zhang(张云), and Qiuyun Chen(陈秋云). Chin. Phys. B, 2023, 32(9): 097103.
[8] Single crystal growth and electronic structure of Rh-doped Sr3Ir2O7
Bingqian Wang(王冰倩), Shuting Peng(彭舒婷), Zhipeng Ou(欧志鹏), Yuchen Wang(王宇晨), Muhammad Waqas, Yang Luo(罗洋), Zhiyuan Wei(魏志远), Linwei Huai(淮琳崴), Jianchang Shen(沈建昌), Yu Miao(缪宇), Xiupeng Sun(孙秀鹏), Yuewei Yin(殷月伟), and Junfeng He(何俊峰). Chin. Phys. B, 2023, 32(8): 087108.
[9] Pressure-induced phase transition and electronic structure evolution in layered semimetal HfTe2
Mei-Guang Zhang(张美光), Lei Chen(陈磊), Long Feng(冯龙), Huan-Huan Tuo(拓换换), Yun Zhang(张云), Qun Wei(魏群), and Pei-Fang Li(李培芳). Chin. Phys. B, 2023, 32(8): 086101.
[10] Multiple surface states, nontrivial band topology, and antiferromagnetism in GdAuAl4Ge2
Chengcheng Zhang(张成成), Yuan Wang(王渊), Fayuan Zhang(张发远), Hongtao Rong(戎洪涛), Yongqing Cai(蔡永青), Le Wang(王乐), Xiao-Ming Ma(马小明), Shu Guo(郭抒), Zhongjia Chen(陈仲佳), Yanan Wang(王亚南), Zhicheng Jiang(江志诚), Yichen Yang(杨逸尘), Zhengtai Liu(刘正太), Mao Ye(叶茂), Junhao Lin(林君浩), Jiawei Mei(梅佳伟), Zhanyang Hao(郝占阳), Zijuan Xie(谢子娟), and Chaoyu Chen(陈朝宇). Chin. Phys. B, 2023, 32(7): 077401.
[11] Critical behavior in the epitaxial growth of two-dimensional tellurium films on SrTiO3 (001) substrates
Haimin Zhang(张海民), Dezhi Song(宋德志), Fuyang Huang(黄扶旸), Jun Zhang(仉君), and Ye-Ping Jiang(蒋烨平). Chin. Phys. B, 2023, 32(6): 066802.
[12] Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy
Zilu Wang(王子禄), Haoyu Dong(董皓宇), Weichang Zhou(周伟昌), Zhihai Cheng(程志海), and Shancai Wang(王善才). Chin. Phys. B, 2023, 32(6): 067103.
[13] Two-dimensional CrP2 with high specific capacity and fast charge rate for lithium-ion battery
Xiaoyun Wang(王晓允), Tao Jing(荆涛), and Dongmei Liang(梁冬梅). Chin. Phys. B, 2023, 32(6): 067102.
[14] Prediction of LiCrTe2 monolayer as a half-metallic ferromagnet with a high Curie temperature
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(5): 057505.
[15] Predicting novel atomic structure of the lowest-energy FenP13-n (n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺) and Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
No Suggested Reading articles found!