Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 077406    DOI: 10.1088/1674-1056/ad4ffa
Special Issue: SPECIAL TOPIC — Recent progress on kagome metals and superconductors
SPECIAL TOPIC—Recent progress on kagome metals and superconductors Prev   Next  

Two-fold symmetry of the in-plane resistance in kagome superconductor Cs(V1-xTax)3Sb5 with enhanced superconductivity

Zhen Zhao(赵振)1,2,†, Ruwen Wang(王汝文)1,2,†, Yuhang Zhang(张宇航)1,2, Ke Zhu(祝轲)1,2, Weiqi Yu(余维琪)1, Yechao Han(韩烨超)2, Jiali Liu(刘家利)1,2, Guojing Hu(胡国静)1, Hui Guo(郭辉)1,2, Xiao Lin(林晓)2, Xiaoli Dong(董晓莉)1,2, Hui Chen(陈辉)1,2, Haitao Yang(杨海涛)1,2,3,‡, and Hong-Jun Gao(高鸿钧)1,2,3
1 Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  The kagome superconductor CsV$_{3}$Sb$_{5}$ has attracted widespread attention due to its rich correlated electron states including superconductivity, charge density wave (CDW), nematicity, and pair density wave. Notably, the modulation of the intertwined electronic orders by the chemical doping is significant to illuminate the cooperation/competition between multiple phases in kagome superconductors. In this study, we have synthesized a series of tantalum-substituted Cs(V$_{1-x}$Ta$_{x}$)$_{3}$Sb$_{5}$ by a modified self-flux method. Electrical transport measurements reveal that CDW is suppressed gradually and becomes undetectable as the doping content of $ x$ is over 0.07. Concurrently, the superconductivity is enhanced monotonically from $T_{\rm c} \sim 2.8 $ K at $x =0$ to 5.2 K at $x = 0.12$. Intriguingly, in the absence of CDW, Cs(V$_{1-x}$Ta$_{x}$)$_{3}$Sb$_{5}$ ($x = 0.12$) crystals exhibit a pronounced two-fold symmetry of the in-plane angular-dependent magnetoresistance (AMR) in the superconducting state, indicating the anisotropic superconducting properties in the Cs(V$_{1-x}$Ta$_{x}$)$_{3}$Sb$_{5}$. Our findings demonstrate that Cs(V$_{1-x}$Ta$_{x}$)$_{3}$Sb$_{5}$ with the non-trivial band topology is an excellent platform to explore the superconductivity mechanism and intertwined electronic orders in quantum materials.
Keywords:  kagome superconductor      charge density wave      rotation symmetry breaking  
Received:  22 April 2024      Revised:  17 May 2024      Accepted manuscript online:  24 May 2024
PACS:  74.25.-q (Properties of superconductors)  
  71.45.Lr (Charge-density-wave systems)  
  11.30.Qc (Spontaneous and radiative symmetry breaking)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1204100), the National Natural Science Foundation of China (Grant No. 62488201), the Chinese Academy of Sciences (Grant Nos. XDB33030000, ZDBS-SSW-WHC001, YSBR-003, and YSBR-053), and Innovation Program of Quantum Science and Technology (Grant No. 2021ZD0302700).
Corresponding Authors:  Haitao Yang     E-mail:  htyang@iphy.ac.cn

Cite this article: 

Zhen Zhao(赵振), Ruwen Wang(王汝文), Yuhang Zhang(张宇航), Ke Zhu(祝轲), Weiqi Yu(余维琪), Yechao Han(韩烨超), Jiali Liu(刘家利), Guojing Hu(胡国静), Hui Guo(郭辉), Xiao Lin(林晓), Xiaoli Dong(董晓莉), Hui Chen(陈辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧) Two-fold symmetry of the in-plane resistance in kagome superconductor Cs(V1-xTax)3Sb5 with enhanced superconductivity 2024 Chin. Phys. B 33 077406

[1] Wang W S, Li Z Z, Xiang Y Y and Wang Q H 2013 Phys. Rev. B 87 115135
[2] Morali N, Batabyal R, Nag P K, Liu E, Xu Q, Sun Y, Yan B, Felser C, Avraham N and Beidenkopf H 2019 Science 365 1286
[3] Yin J X, Ma W, Cochran T A, Xu X, Zhang S S, Tien H J, Shumiya N, Cheng G, Jiang K, Lian B, Song Z, Chang G, Belopolski I, Multer D, Litskevich M, Cheng Z J, Yang X P, Swidler B, Zhou H, Lin H, Neupert T, Wang Z, Yao N, Chang T R, Jia S and Zahid Hasan M 2020 Nature 583 533
[4] Khuntia P, Velazquez M, Barthélemy Q, Bert F, Kermarrec E, Legros A, Bernu B, Messio L, Zorko A and Mendels P 2020 Nat. Phys. 16 469
[5] Kiesel M L, Platt C and Thomale R 2013 Phys. Rev. Lett. 110 126405
[6] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J and Wilson S D 2020 Phys. Rev. Lett. 125 247002
[7] Hu Y, Teicher S M L, Ortiz B R, Luo Y, Peng S, Huai L, Ma J, Plumb N C, Wilson S D, He J and Shi M 2022 Sci. Bull. 67 495
[8] Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M, Wang Z, Balents L, Wilson S D and Zeljkovic I 2021 Nature 599 216
[1] Wang W S, Li Z Z, Xiang Y Y and Wang Q H 2013 Phys. Rev. B 87 115135
[2] Morali N, Batabyal R, Nag P K, Liu E, Xu Q, Sun Y, Yan B, Felser C, Avraham N and Beidenkopf H 2019 Science 365 1286
[3] Yin J X, Ma W, Cochran T A, Xu X, Zhang S S, Tien H J, Shumiya N, Cheng G, Jiang K, Lian B, Song Z, Chang G, Belopolski I, Multer D, Litskevich M, Cheng Z J, Yang X P, Swidler B, Zhou H, Lin H, Neupert T, Wang Z, Yao N, Chang T R, Jia S and Zahid Hasan M 2020 Nature 583 533
[4] Khuntia P, Velazquez M, Barthélemy Q, Bert F, Kermarrec E, Legros A, Bernu B, Messio L, Zorko A and Mendels P 2020 Nat. Phys. 16 469
[5] Kiesel M L, Platt C and Thomale R 2013 Phys. Rev. Lett. 110 126405
[6] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J and Wilson S D 2020 Phys. Rev. Lett. 125 247002
[7] Hu Y, Teicher S M L, Ortiz B R, Luo Y, Peng S, Huai L, Ma J, Plumb N C, Wilson S D, He J and Shi M 2022 Sci. Bull. 67 495
[8] Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M, Wang Z, Balents L, Wilson S D and Zeljkovic I 2021 Nature 599 216
[9] Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R and Wilson S D 2021 Phys. Rev. Mater. 5 034801
[10] Yin Q, Tu Z, Gong C, Fu Y, Yan S and Lei H 2021 Chin. Phys. Lett. 38 037403
[11] Nie L, Sun K, Ma W, Song D, Zheng L, Liang Z, Wu P, Yu F, Li J, Shan M, Zhao D, Li S, Kang B, Wu Z, Zhou Y, Liu K, Xiang Z, Ying J, Wang Z, Wu T and Chen X 2022 Nature 604 59
[12] Guo C, Putzke C, Konyzheva S, Huang X, Gutierrez-Amigo M, Errea I, Chen D, Vergniory M G, Felser C, Fischer M H, Neupert T and Moll P J W 2022 Nature 611 461
[13] Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, Xu G, Guguchia Z, He J, Hossain M S, Liu X, Ruff J, Kautzsch L, Zhang S S, Chang G, Belopolski I, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Wang Z, Thomale R, Neupert T, Wilson S D and Hasan M Z 2021 Nat. Mater. 20 1353
[14] Yang S Y, Wang Y, Ortiz B R, Liu D, Gayles J, Derunova E, GonzalezHernandez R, Smejkal L, Chen Y, Parkin S S P, Wilson S D, Toberer E S, McQueen T and Ali M N 2020 Sci. Adv. 6 eabb6003
[15] Feng X, Jiang K, Wang Z and Hu J 2021 Sci. Bull. 66 1384
[16] Denner M M, Thomale R and Neupert T 2021 Phys. Rev. Lett. 127 217601
[17] Mielke C, Das D, Yin J X, Liu H, Gupta R, Jiang Y X, Medarde M, Wu X, Lei H C, Chang J, Dai P, Si Q, Miao H, Thomale R, Neupert T, Shi Y, Khasanov R, Hasan M Z, Luetkens H and Guguchia Z 2022 Nature 602 245
[18] Zhang Z, Chen Z, Zhou Y, Yuan Y, Wang S, Wang J, Yang H, An C, Zhang L, Zhu X, Zhou Y, Chen X, Zhou J and Yang Z 2021 Phys. Rev. B 103 224513
[19] Yu F H, Ma D H, Zhuo W Z, Liu S Q, Wen X K, Lei B, Ying J J and Chen X H 2021 Nat. Commun. 12 3645
[20] Chen K Y, Wang N N, Yin Q W, Gu Y H, Jiang K, Tu Z J, Gong C S, Uwatoko Y, Sun J P, Lei H C, Hu J P and Cheng J G 2021 Phys. Rev. Lett. 126 247001
[21] Zheng L, Wu Z, Yang Y, Nie L, Shan M, Sun K, Song D, Yu F, Li J, Zhao D, Li S, Kang B, Zhou Y, Liu K, Xiang Z, Ying J, Wang Z, Wu T and Chen X 2022 Nature 611 682
[22] Zhao C C, Wang L S, Xia W, Yin Q W, Ni J M, Huang Y Y, Tu C P, Tao Z C, Tu Z J, Gong C S, Lei H C, Guo Y F, Yang X F and Li S Y 2021 arXiv:2102.08356
[cond-mat.supr-con]
[23] Duan W, Nie Z, Luo S, Yu F, Ortiz B R, Yin L, Su H, Du F, Wang A, Chen Y, Lu X, Ying J, Wilson S D, Chen X, Song Y and Yuan H 2021 Sci. China Phys. Mech. Astron. 64 107462)
[24] Chen H, Yang H, Hu B, Zhao Z, Yuan J, Xing Y, Qian G, Huang Z, Li G, Ye Y, Ma S, Ni S, Zhang H, Yin Q, Gong C, Tu Z, Lei H, Tan H, Zhou S, Shen C, Dong X, Yan B, Wang Z and Gao H J 2021 Nature 599 222
[25] Zhou S and Wang Z 2022 Nat. Commun. 13 7288
[26] Ge J, Wang P, Xing Y, Yin Q, Wang A, Shen J, Lei H, Wang Z and Wang J 2024 Phys. Rev. X 14 021025
[27] Wu J, Bollinger A T, He X and Božović I 2017 Nature 547 432
[28] Ji H, Liu Y, Li Y, Ding X, Xie Z, Ji C, Qi S, Gao X, Xu M, Gao P, Qiao L, Yang Y feng, Zhang G M and Wang J 2023 Nat. Commun. 14 7155
[29] Ni S, Ma S, Zhang Y, Yuan J, Yang H, Lu Z, Wang N, Sun J, Zhao Z, Li D, Liu S, Zhang H, Chen H, Jin K, Cheng J, Yu L, Zhou F, Dong X, Hu J, Gao H J and Zhao Z 2021 Chin. Phys. Lett. 38 057403
[30] Ying Xiang, Li Q, Li Y, Xie W, Yang H, Wang Z, Yao Y and Wen H H 2021 Nat. Commun. 12 6727
[31] Yang H, Huang Z, Zhang Y, Zhao Z, Shi J, Luo H, Zhao L, Qian G, Tan H, Hu B, Zhu K, Lu Z, Zhang H, Sun J, Cheng J, Shen C, Lin X, Yan B, Zhou X, Wang Z, Pennycook S J, Chen H, Dong X, Zhou W and Gao H J 2022 Sci. Bull. 67 2176
[32] Oey Y M, Ortiz B R, Kaboudvand F, Frassineti J, Garcia E, Cong R, Sanna S, Mitrović V F, Seshadri R and Wilson S D 2022 Phys. Rev. Mater. 6 L041801
[33] Zhong Y, Liu J, Wu X, Guguchia Z, Yin J X, Mine A, Li Y, Najafzadeh S, Das D, Mielke C, Khasanov R, Luetkens H, Suzuki T, Liu K, Han X, Kondo T, Hu J, Shin S, Wang Z, Shi X, Yao Y and Okazaki K 2023 Nature 617 488
[34] Liu J, Li Q, Li Y, Fan X, Li J, Zhu P, Deng H, Yin J X, Yang H, Li J, Wen H H and Wang Z 2024 Sci. Rep. 14 9580
[35] Luo Y, Han Y, Liu J, Chen H, Huang Z, Huai L, Li H, Wang B, Shen J, Ding S, Li Z, Peng S, Wei Z, Miao Y, Sun X, Ou Z, Xiang Z, Hashimoto M, Lu D, Yao Y, Yang H, Chen X, Gao H J, Qiao Z, Wang Z and He J 2023 Nat. Commun. 14 3819
[36] Gurevich A 2003 Phys. Rev. B 67 184515
[37] Sato M and Ando Y 2017 Rep. Prog. Phys. 80 076501
[38] Matano K, Kriener M, Segawa K, Ando Y and Zheng G Q 2016 Nat. Phys. 12 852
[39] Asaba T, Lawson B J, Tinsman C, Chen L, Corbae P, Li G, Qiu Y, Hor Y S, Fu L and Li L 2017 Phys. Rev. X 7 011009
[40] Liang Z, Hou X, Zhang F, Ma W, Wu P, Zhang Z, Yu F, Ying J J, Jiang K, Shan L, Wang Z and Chen X H 2021 Phys. Rev. X 11 031026
[41] Fu Y, Zhao N, Chen Z, Yin Q, Tu Z, Gong C, Xi C, Zhu X, Sun Y, Liu K and Lei H 2021 Phys. Rev. Lett. 127 207002
[1] Manipulating charge density wave state in kagome compound RbV3Sb5
Yu-Xin Meng(孟雨欣), Cheng-Long Xue(薛成龙), Li-Guo Dou(窦立国), Wei-Min Zhao(赵伟民), Qi-Wei Wang(汪琪玮), Yong-Jie Xu(徐永杰), Xiangqi Liu(刘祥麒), Wei Xia(夏威), Yanfeng Guo(郭艳峰), and Shao-Chun Li(李绍春). Chin. Phys. B, 2023, 32(9): 096801.
[2] Electronic states of domain walls in commensurate charge density wave ground state and mosaic phase in 1T-TaS2
Yan Li(李彦), Yao Xiao(肖遥), Qi Zheng(郑琦), Xiao Lin(林晓), Li Huang(黄立), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(7): 077101.
[3] Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy
Zilu Wang(王子禄), Haoyu Dong(董皓宇), Weichang Zhou(周伟昌), Zhihai Cheng(程志海), and Shancai Wang(王善才). Chin. Phys. B, 2023, 32(6): 067103.
[4] Anisotropy of 2H-NbSe2 in the superconducting and charge density wave states
Chi Zhang(张驰), Shan Qiao(乔山), Hong Xiao(肖宏), and Tao Hu(胡涛). Chin. Phys. B, 2023, 32(4): 047201.
[5] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[6] Charge density wave states in phase-engineered monolayer VTe2
Zhi-Li Zhu(朱知力), Zhong-Liu Liu(刘中流), Xu Wu(武旭), Xuan-Yi Li(李轩熠), Jin-An Shi(时金安), Chen Liu(刘晨), Guo-Jian Qian(钱国健), Qi Zheng(郑琦), Li Huang(黄立), Xiao Lin(林晓), Jia-Ou Wang(王嘉欧), Hui Chen(陈辉), Wu Zhou(周武), Jia-Tao Sun(孙家涛), Ye-Liang Wang(王业亮), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(7): 077101.
[7] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[8] Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5
Bin Hu(胡彬), Yuhan Ye(耶郁晗), Zihao Huang(黄子豪), Xianghe Han(韩相和), Zhen Zhao(赵振),Haitao Yang(杨海涛), Hui Chen(陈辉), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(5): 058102.
[9] Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5
Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
[10] Observation of multiple charge density wave phases in epitaxial monolayer 1T-VSe2 film
Junyu Zong(宗君宇), Yang Xie(谢阳), Qinghao Meng(孟庆豪), Qichao Tian(田启超), Wang Chen(陈望), Xuedong Xie(谢学栋), Shaoen Jin(靳少恩), Yongheng Zhang(张永衡), Li Wang(王利), Wei Ren(任伟), Jian Shen(沈健), Aixi Chen(陈爱喜), Pengdong Wang(王鹏栋), Fang-Sen Li(李坊森), Zhaoyang Dong(董召阳), Can Wang(王灿), Jian-Xin Li(李建新), and Yi Zhang(张翼). Chin. Phys. B, 2022, 31(10): 107301.
[11] Evolution of superconductivity and charge order in pressurized RbV3Sb5
Feng Du(杜锋), Shuaishuai Luo(罗帅帅), Rui Li(李蕊), Brenden R. Ortiz, Ye Chen(陈晔), Stephen D. Wilson, Yu Song(宋宇), and Huiqiu Yuan(袁辉球). Chin. Phys. B, 2022, 31(1): 017404.
[12] A density-wave-like transition in the polycrystalline V3Sb2 sample with bilayer kagome lattice
Ningning Wang(王宁宁), Yuhao Gu(顾雨豪), M. A. McGuire, Jiaqiang Yan, Lifen Shi(石利粉), Qi Cui(崔琦), Keyu Chen(陈科宇), Yuxin Wang(王郁欣), Hua Zhang(张华), Huaixin Yang(杨槐馨), Xiaoli Dong(董晓莉), Kun Jiang(蒋坤), Jiangping Hu(胡江平), Bosen Wang(王铂森), Jianping Sun(孙建平), and Jinguang Cheng(程金光). Chin. Phys. B, 2022, 31(1): 017106.
[13] Pressure tuning of the anomalous Hall effect in the kagome superconductor CsV3Sb5
Fang-Hang Yu(喻芳航), Xi-Kai Wen(温茜凯), Zhi-Gang Gui(桂智刚), Tao Wu(吴涛), Zhenyu Wang(王震宇), Zi-Ji Xiang(项子霁), Jianjun Ying(应剑俊), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2022, 31(1): 017405.
[14] Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure
Bowen Zhang(张博文), Chao An(安超), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Yonghui Zhou(周永惠), Yifang Yuan(袁亦方), Chunhua Chen(陈春华), Lili Zhang(张丽丽), Xiaoping Yang(杨晓萍), and Zhaorong Yang(杨昭荣). Chin. Phys. B, 2021, 30(7): 076201.
[15] Photoinduced phase transitions in two-dimensional charge-density-wave 1T-TaS2
Wen Wen(文雯), Chunhe Dang(党春鹤), Liming Xie(谢黎明). Chin. Phys. B, 2019, 28(5): 058504.
No Suggested Reading articles found!