CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Crystal growth, magnetic and electrical transport properties of the kagome magnet RCr6Ge6 (R=Gd-Tm) |
Xingyu Yang(杨星宇)1,2, Qingqi Zeng(曾庆祺)2,†, Miao He(何苗)1,2, Xitong Xu(许锡童)2, Haifeng Du(杜海峰)1,2,‡, and Zhe Qu(屈哲)1,2,§ |
1 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China; 2 Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, High Magnetic Field Laboratory of Chinese Academy of Sciences (CHMFL), HFIPS, CAS, Hefei 230031, China |
|
|
Abstract Kagome magnets have attracted considerable research attention due to the interplay between topology, magnetism and electronic correlations. In this study we report single-crystal synthesis of a series of the kagome magnets $R$Cr$_{6}$Ge$_{6}$ ($R={\rm Gd}$-Tm) that possess defect-free Cr kagome lattices and systematically study their magnetic and electrical transport properties. The transition from a canted ferrimagnetic to a paramagnetic state in GdCr$_{6}$Ge$_{6}$, TbCr$_{6}$Ge$_{6}$, DyCr$_{6}$Ge$_{6}$, HoCr$_{6}$Ge$_{6}$, ErCr$_{6}$Ge$_{6}$ and TmCr$_{6}$Ge$_{6}$ occurs at 11.3 K, 10.8 K, 4.3 K, 2.5 K, 3.3 K and below 2 K, respectively, due to $R$-$R$ interactions within the compounds. Magnetization measurements reveal highly anisotropic magnetism with canted magnetic moments in these compounds. In electrical transport, both negative and positive magnetoresistances at different magnetic fields and temperatures have been observed due to the competition between different scattering mechanisms. This work enriches our understanding of the Cr-based kagome magnets and paves the way to search for possible topological responses in this family.
|
Received: 05 February 2024
Revised: 08 April 2024
Accepted manuscript online: 12 April 2024
|
PACS:
|
75.20.En
|
(Metals and alloys)
|
|
75.40.Cx
|
(Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2021YFA1600204), the National Natural Science Foundation of China (Grant Nos. U2032213, 12104461, 12374129, 12304156, and 52325105), and Chinese Academy of Sciences (Grant Nos. YSBR-084 and JZHKYPT-2021-08). |
Corresponding Authors:
Qingqi Zeng, Haifeng Du, Zhe Qu
E-mail: qqzeng@hmfl.ac.cn;duhf@hmfl.ac.cn;zhequ@hmfl.ac.cn
|
Cite this article:
Xingyu Yang(杨星宇), Qingqi Zeng(曾庆祺), Miao He(何苗), Xitong Xu(许锡童), Haifeng Du(杜海峰), and Zhe Qu(屈哲) Crystal growth, magnetic and electrical transport properties of the kagome magnet RCr6Ge6 (R=Gd-Tm) 2024 Chin. Phys. B 33 077501
|
[1] Wang Y, Wu H, McCandless G T, Chan J Y and Ali M N 2023 Nat. Rev. Phys. 5 635 [2] Yin J X, Lian B and Hasan M Z 2022 Nature 612 647 [3] Xu X T, Yin J X, Qu Z and Jia S 2023 Rep. Prog. Phys. 86 114502 [4] Neupert T, Denner M M, Yin J X, Thomale R and Hasan M Z 2022 Nat. Phys. 18 137 [5] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J F and Wilson S D 2020 Phys. Rev. Lett. 125 247002 [6] Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R and Wilson S D 2021 Phys. Rev. Mater. 5 034801 [7] Teng X K, Chen L B, Ye F, Rosenberg E, Liu Z Y, Yin J X, Jiang Y X, Oh J S, Hasan M Z, Neubauer K J, Gao B, Xie Y F, Hashimoto M, Lu D H, Jozwiak C, Bostwick A, Rotenberg E, Birgeneau R J, Chu J H, Yi M and Dai P C 2022 Nature 609 490 [8] Liang Z W, Hou X Y, Zhang F, Ma W R, Wu P, Zhang Z Y, Yu F H, Ying J J, Jiang K, Shan L, Wang Z Y and Chen X H 2021 Phys. Rev. X 11 031026 [9] Nie L P, Sun K, Ma W R, Song D W, Zheng L X, Liang Z W, Wu P, Yu F H, Li J, Shan M, Zhao D, Li S J, Kang B L, Wu Z M, Zhou Y B, Liu K, Xiang Z J, Ying J J, Wang Z Y, Wu T and Chen X H 2022 Nature 604 59 [10] Arachchige H W S, Meier W R, Marshall M, Matsuoka T, Xue R, McGuire M A, Hermann R P, Cao H B and Mandrus D 2022 Phys. Rev. Lett. 129 216402 [11] Zhang X X, Hou J, Xia W, Xu Z, Yang P T, Wang A Q, Liu Z Y, Shen J, Zhang H, Dong X L, Uwatoko Y, Sun J P, Wang B S, Guo Y F and Cheng J G 2022 Materials 15 7372 [12] Wu C J, Bergman D, Balents L and Das Sarma S 2007 Phys. Rev. Lett. 99 070401 [13] Tang E, Mei J W and Wen X G 2011 Phys. Rev. Lett. 106 236802 [14] Xu G, Lian B and Zhang S C 2015 Phys. Rev. Lett. 115 186802 [15] Han T H, Helton J S, Chu S Y, Nocera D G, Rodriguez-Rivera J A, Broholm C and Lee Y S 2012 Nature 492 406 [16] Helton J S, Matan K, Shores M P, Nytko E A, Bartlett B M, Yoshida Y, Takano Y, Suslov A, Qiu Y, Chung J H, Nocera D G and Lee Y S 2007 Phys. Rev. Lett. 98 107204 [17] Tang J, Wu Y D, Kong L Y, Wang W W, Chen Y T, Wang Y H, Soh Y, Xiong Y M, Tian M L and Du H F 2021 Natl. Sci. Rev. 8 nwaa200 [18] Wang W W, Song D S, Wei W S, Nan P F, Zhang S L, Ge B H, Tian M L, Zang J D and Du H F 2022 Nat. Commun. 13 1593 [19] Tang J, Wu Y D, Wang W W, Kong L Y, Lv B Y, Wei W S, Zang J D, Tian M L and Du H F 2021 Nat. Nanotechnol. 16 1086 [20] Lin Z Y, Choi J H, Zhang Q, Qin W, Yi S H, Wang P D, Li L, Wang Y F, Zhang H, Sun Z, Wei L M, Zhang S B, Guo T F, Lu Q Y, Cho J H, Zeng C G and Zhang Z Y 2018 Phys. Rev. Lett. 121 096401 [21] Ye L D, Kang M G, Liu J W, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature 555 638 [22] Liu E K, Sun Y, Kumar N, Muechler L, Sun A L, Jiao L, Yang S Y, Liu D F, Liang A J, Xu Q N, Kroder J, Süss V, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W H, Schnelle W, Wirth S, Chen Y L, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125 [23] Morali N, Batabyal R, Nag P K, Liu E K, Xu Q A, Sun Y, Yan B H, Felser C, Avraham N and Beidenkopf H 2019 Science 365 1286 [24] Yin J X, Ma W L, Cochran T A, Xu X T, Zhang S T S, Tien H J, Shumiya N, Cheng G M, Jiang K, Lian B, Song Z D, Chang G Q, Belopolski I, Multer D, Litskevich M, Cheng Z J, Yang X P, Swidler B, Zhou H B, Lin H, Neupert T, Wang Z Q, Yao N, Chang T R, Jia S and Hasan M Z 2020 Nature 583 533 [25] Xu X T, Yin J X, Ma W L, Tien H J, Qiang X B, Reddy P V S, Zhou H B, Shen J, Lu H Z, Chang T R, Qu Z and Jia S 2022 Nat. Commun. 13 1197 [26] Gao L L, Shen S W, Wang Q, Shi W J, Zhao Y, Li C H, Cao W Z, Pei C Y, Ge J Y, Li G, Li J, Chen Y L, Yan S C and Qi Y P 2021 Appl. Phys. Lett. 119 092405 [27] Dhakal G, Kabeer F C, Pathak A K, Kabir F, Poudel N, Filippone R, Casey J, Sakhya A P, Regmi S, Sims C, Dimitri K, Manfrinetti P, Gofryk K, Oppeneer P M and Neupane M 2021 Phys. Rev. B 104 L161115 [28] Ma W L, Xu X T, Wang Z H, Zhou H B, Marshall M, Qu Z, Xie W W and Jia S 2021 Phys. Rev. B 103 235109 [29] Lv B D, Zhong R, Luo X H, Ma S C, Chen C C, Wang S J, Luo Q, Gao F, Fang C S, Ren W J and Zhong Z C 2023 J. Alloys Comp. 957 170356 [30] Asaba T, Thomas S M, Curtis M, Thompson J D, Bauer E D and Ronning F 2020 Phys. Rev. B 101 174415 [31] Zeng H, Yu G, Luo X H, Chen C C, Fang C S, Ma S C, Mo Z J, Shen J, Yuan M and Zhong Z C 2022 J. Alloy. Comp. 899 163356 [32] Chen D, Le C C, Fu C G, Lin H C, Schnelle W, Sun Y and Felser C 2021 Phys. Rev. B 103 144410 [33] Kabir F, Filippone R, Dhakal G, Lee Y, Poudel N, Casey J, Sakhya A P, Regmi S, Smith R, Manfrinetti P, Ke L Q, Gofryk K, Neupane M and Pathak A K 2022 Phys. Rev. Mater. 6 064404 [34] Wang Q, Neubauer K J, Duan C R, Yin Q W, Fujitsu S, Hosono H, Ye F, Zhang R, Chi S X, Krycka K, Lei H C and Dai P C 2021 Phys. Rev. B 103 014416 [35] Zhang H, Liu C, Zhang Y J, Hou Z P, Fu X W, Zhang X M, Gao X S and Liu J M 2022 Appl. Phys. Lett. 121 202401 [36] Wang B, Yi E K, Li L Y, Qin J W, Hu B F, Shen B and Wang M 2022 Phys. Rev. B 106 125107 [37] Liu C, Zhang H, Li Z F, Yan Y, Zhang Y J, Hou Z P and Fu X W 2023 Surf. Interfaces 39 102866 [38] Roychowdhury S, Ochs A M, Guin S N, Samanta K, Noky J, Shekhar C, Vergniory M G, Goldberger J E and Felser C 2022 Adv. Mater. 34 2201350 [39] Hu Y, Wu X, Yang Y, Gao S, Plumb N C, Schnyder A P, Xie W, Ma J and Shi M 2022 Sci. Adv. 8 eadd2024 [40] He M, Xu X T, Li D, Zeng Q Q, Liu Y L, Zhao H T, Zhou S M, Zhou J H and Qu Z 2024 Phys. Rev. B 109 155117 [41] Konyk M, Romaka L, Stadnyk Y, Romaka V V and Pashkevych V 2021 Phys. Chem. Solid State 22 248 [42] Romaka L, Stadnyk Y, Romaka V V and Konyk M 2022 Phys. Chem. Solid State 23 633 [43] SchobingerPapamantellos P, RodriguezCarvajal J and Buschow K H J 1997 J. Alloys Comp. 255 67 [44] Venturini G, Welter R and Malaman B 1992 J. Alloys Comp. 185 99 [45] SchobingerPapamantellos P, RodriguezCarvajal J and Buschow K H J 1997 J. Alloys Comp. 256 92 [46] Fredrickson D C, Lidin S, Venturini G, Malaman B and Christensen J 2008 J. Am. Chem. Soc. 130 8195 [47] Brabers J, Buschow K H J and Deboer F R 1994 J. Alloys Comp. 205 77 [48] Du Z, Rahman A, Song J P, Zhao J, Liu W, Fan J Y, Ma C L, Ge M, Xiong Y M, Pi L, Zhang L and Zhang Y H 2023 Sci. China-Phys. Mech. Astron. 66 297511 [49] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|