CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Experimental observation of Fermi-level flat band in novel kagome metal CeNi5 |
Xue-Zhi Chen(陈学智)1,2,3, Le Wang(王乐)4,5, Shuai Zhang(张帅)6, Ren-Jie Zhang(张任杰)2,3,7, Yi-Wei Cheng(程以伟)1,2,3, Yu-Dong Hu(胡裕栋)2, Cheng-Nuo Meng(孟承诺)1,3, Zheng-Tai Liu(刘正太)10, Bai-Qing Lv(吕佰晴)2,8,9,†, and Yao-Bo Huang(黄耀波)10,1,3,‡ |
1 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; 2 Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China; 4 Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; 5 International Quantum Academy, Shenzhen 518048, China; 6 Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China; 7 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 8 School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; 9 Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China; 10 Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China |
|
|
Abstract Kagome materials are a class of material with a lattice structure composed of corner-sharing triangles that produce various exotic electronic phenomena, such as Dirac fermions, van Hove singularities, and flat bands. However, most of the known kagome materials have a flat band detached from the Fermi energy, which limits the investigation of the emergent flat band physics. In this work, by combining soft x-ray angle-resolved photoemission spectroscopy (ARPES) and the first-principles calculations, the electronic structure is investigated of a novel kagome metal CeNi$_{5}$ with a clear dispersion along the $k_{z}$ direction and a Fermi level flat band in the $\varGamma$-$K$-$M$-$\varGamma $ plane. Besides, resonant ARPES experimental results indicate that the valence state of Ce ions is close to 4$^{+}$, which is consistent with the transport measurement result. Our results demonstrate the unique electronic properties of CeNi$_{5}$ as a new kagome metal and provide an ideal platform for exploring the flat band physics and the interactions between different types of flat bands by tuning the valence state of Ce ions.
|
Received: 10 February 2024
Revised: 16 March 2024
Accepted manuscript online:
|
PACS:
|
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
79.60.-i
|
(Photoemission and photoelectron spectra)
|
|
Fund: Project support by the Science Fund from Shanghai Committee of Science and Technology, China (Grant No. 23JC1403300), the Shanghai Municipal Science and Technology Major Project, China, the TDLI Starting up Grant, the National Natural Science Foundation of China (Grant Nos. 12374063, 12204223, and 23Z990202580), the Fund from the Ministry of Science and Technology of China (Grant No. 2023YFA1407400), the Shanghai Natural Science Fund for Original Exploration Program, China (Grant No. 23ZR1479900), and Shanghai Talent Program, China. |
Corresponding Authors:
Bai-Qing Lv, Yao-Bo Huang
E-mail: baiqing@sjtu.edu.cn;huangyaobo@sari.ac.cn
|
Cite this article:
Xue-Zhi Chen(陈学智), Le Wang(王乐), Shuai Zhang(张帅), Ren-Jie Zhang(张任杰), Yi-Wei Cheng(程以伟), Yu-Dong Hu(胡裕栋), Cheng-Nuo Meng(孟承诺), Zheng-Tai Liu(刘正太), Bai-Qing Lv(吕佰晴), and Yao-Bo Huang(黄耀波) Experimental observation of Fermi-level flat band in novel kagome metal CeNi5 2024 Chin. Phys. B 33 087402
|
[1] Yin J X, Lian B and Hasan M Z 2022 Nature 612 647 [2] Wang Y, Wu H, McCandless G T, Chan, J Y and Ali M 2023 Nat. Rev. Phys. 5 635 [3] Wang Z J, Sun Y, Chen X Q, Franchini C, Xu G, Weng H M, Dai X and Fang Z 2012 Phys. Rev. B 85 195320 [4] Ye L D, Kang M G, Liu J W, Cube F V, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature 555 638 [5] Yin J X, Ma W L, Cochran T A, et al. 2020 Nature 583 533 [6] Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C and Chen Y L 2019 Science 365 1282 [7] Liu E K, Sun Y, Kumar N, et al. 2018 Nat. Phys. 14 1125 [8] Markiewicz, R S 1997 J. Phys. Chem. Solids 58 1179 [9] Wang W S, Li Z Z, Xiang Y Y and Wang Q H 2013 Phys. Rev. B 87 115135 [10] Kiesel M L, Platt C and Thomale R 2013 Phys. Rev. Lett. 110 126405 [11] Regnault N, Xu Y F, Li M R, Ma, D S, Jovanovic M, Yazdani A, Parkin S P, Felser C, Schoop L M, Ong N P, Cava R J, Elcoro L, Song Z D and Bernevig B A 2022 Nature 603 824 [12] Miyahara S, Kusuta S and Furukawa N 2007 Physica C 460-462 1145 [13] Tang E, Mei J W and Wen X G 2011 Phys. Rev. Lett. 106 236802 [14] Wu C, Bergman D, Balents L and Das Sarma S 2007 Phys. Rev. Lett. 99 070401 [15] Kang M G, Fang S A, Kim K J, Ortiz B R, Ryu S H, Kim J M, Yoo J G, Sangiovanni G, Sante D D, Park B G, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Wilson S D, Park J H and Comin R 2022 Nat. Phys. 18 301 [16] Nie L P, Sun K L, Ma W, et al. 2022 Nature 604 59 [17] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J F and Wilson S D 2020 Phys. Rev. Lett. 125 247002 [18] Jiang Z C, Liu Z T, Ma H Y, Xia W, Liu Z H, Liu J S, Cho S, Yang Y C, Ding J Y, Liu J Y, Huang Z, Qiao Y X, Shen J J, Jing W C, Liu X Q, Liu J P, Guo Y F and Shen D W 2023 Nat. Commun. 14 4892 [19] Liu Z Z, Li M, Wang Q, Wang G W, Wen C H P, Jiang K, Lu X, Yan S C, Huang Y B, Shen D W, Yin J X, Wang Z P, Lei H C and Wang S C 2020 Nat. Commun. 11 4002 [20] Li M, Wang Q, Wang G W, Yuan Z H, Song W H, Lou R, Liu Z T, Huang Y B, Liu Z H, Lei H C, Yin Z P and Wang S C 2021 Nat. Commun. 12 3129 [21] Liu Z H, Zhao N N, Li M, Yin Q W, Wang Q, Liu Z T, Shen D W, Huang Y B, Lei H C, Liu K and Wang S C 2021 Phys. Rev. B 104 115122 [22] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [23] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [24] Blöchl P E 1994 Phys.Rev. B 50 17953 [25] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [26] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [27] Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272 [28] Wang J, Jorda J L, Pisch A and Flükiger R 2006 Intermetallics 14 695 [29] Lv B Q, Qian T and Ding H 2019 Nat. Rev. Phys. 1 609 [30] Ma J Z, He J B, Xu Y F, et al. 2018 Nat. Phys. 14 349 [31] Lv B Q, Feng Z L, Xu Q N, Gao X, Ma J Z, Kong L Y, Richard P, Huang Y B, Strocov V N, Fang C, Weng H M, Shi Y G, Qian T and Ding H 2017 Nature 546 627 [32] Zhang P, Richard P, Qian T, Xu Y M, Dai X and Ding H 2011 Rev. Sci. Instrum. 82 043712 [33] Marzouk N, Craig R S and Wallace W E 1973 J. Phys. Chem. Solids 34 15 [34] Cao Y, Fatemi V, Demir Ahmet, Fang S A, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K J, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80 [35] Cao Y, Fatemi V, Fang S A, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [36] Stewart G R 1984 Rev. Mod. Phys. 56 755 [37] Poelchen G, Rusinov I P, Schulz S, et al. 2022 ACS Nano 16 3573 [38] Chen Q Y, Xu D F, Niu X H, et al. 2017 Phys. Rev. B 96 045107 [39] Chen Q Y, Xu D F, Niu X H, Peng R, Xu H C, Wen C H P, Liu X, Shu L, Tan S Y, Lai X C, Zhang Y J, Lee H, Strocov V N, Bisti F, Dudin P, Zhu J X, Yuan H Q, Kirchner S and Feng D L 2018 Phys. Rev. Lett. 120 066403 [40] Musil O, Svoboda P and Sechovský V 2005 Physica B 359-361 281 [41] Andres K, Graebner J E and Ott H R 1975 Phys. Rev. Lett. 35 1779 [42] Coldea M, Andreica D, Bitu M and Crisan V 1996 J. Magn. Magn. Mater. 157-158 627 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|