Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 087402    DOI: 10.1088/1674-1056/ad4019
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Experimental observation of Fermi-level flat band in novel kagome metal CeNi5

Xue-Zhi Chen(陈学智)1,2,3, Le Wang(王乐)4,5, Shuai Zhang(张帅)6, Ren-Jie Zhang(张任杰)2,3,7, Yi-Wei Cheng(程以伟)1,2,3, Yu-Dong Hu(胡裕栋)2, Cheng-Nuo Meng(孟承诺)1,3, Zheng-Tai Liu(刘正太)10, Bai-Qing Lv(吕佰晴)2,8,9,†, and Yao-Bo Huang(黄耀波)10,1,3,‡
1 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
2 Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China;
4 Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
5 International Quantum Academy, Shenzhen 518048, China;
6 Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China;
7 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
8 School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
9 Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China;
10 Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
Abstract  Kagome materials are a class of material with a lattice structure composed of corner-sharing triangles that produce various exotic electronic phenomena, such as Dirac fermions, van Hove singularities, and flat bands. However, most of the known kagome materials have a flat band detached from the Fermi energy, which limits the investigation of the emergent flat band physics. In this work, by combining soft x-ray angle-resolved photoemission spectroscopy (ARPES) and the first-principles calculations, the electronic structure is investigated of a novel kagome metal CeNi$_{5}$ with a clear dispersion along the $k_{z}$ direction and a Fermi level flat band in the $\varGamma$-$K$-$M$-$\varGamma $ plane. Besides, resonant ARPES experimental results indicate that the valence state of Ce ions is close to 4$^{+}$, which is consistent with the transport measurement result. Our results demonstrate the unique electronic properties of CeNi$_{5}$ as a new kagome metal and provide an ideal platform for exploring the flat band physics and the interactions between different types of flat bands by tuning the valence state of Ce ions.
Keywords:  ARPES      kagome lattice      band structure      flat band  
Received:  10 February 2024      Revised:  16 March 2024      Accepted manuscript online: 
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  73.20.-r (Electron states at surfaces and interfaces)  
  79.60.-i (Photoemission and photoelectron spectra)  
Fund: Project support by the Science Fund from Shanghai Committee of Science and Technology, China (Grant No. 23JC1403300), the Shanghai Municipal Science and Technology Major Project, China, the TDLI Starting up Grant, the National Natural Science Foundation of China (Grant Nos. 12374063, 12204223, and 23Z990202580), the Fund from the Ministry of Science and Technology of China (Grant No. 2023YFA1407400), the Shanghai Natural Science Fund for Original Exploration Program, China (Grant No. 23ZR1479900), and Shanghai Talent Program, China.
Corresponding Authors:  Bai-Qing Lv, Yao-Bo Huang     E-mail:  baiqing@sjtu.edu.cn;huangyaobo@sari.ac.cn

Cite this article: 

Xue-Zhi Chen(陈学智), Le Wang(王乐), Shuai Zhang(张帅), Ren-Jie Zhang(张任杰), Yi-Wei Cheng(程以伟), Yu-Dong Hu(胡裕栋), Cheng-Nuo Meng(孟承诺), Zheng-Tai Liu(刘正太), Bai-Qing Lv(吕佰晴), and Yao-Bo Huang(黄耀波) Experimental observation of Fermi-level flat band in novel kagome metal CeNi5 2024 Chin. Phys. B 33 087402

[1] Yin J X, Lian B and Hasan M Z 2022 Nature 612 647
[2] Wang Y, Wu H, McCandless G T, Chan, J Y and Ali M 2023 Nat. Rev. Phys. 5 635
[3] Wang Z J, Sun Y, Chen X Q, Franchini C, Xu G, Weng H M, Dai X and Fang Z 2012 Phys. Rev. B 85 195320
[4] Ye L D, Kang M G, Liu J W, Cube F V, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature 555 638
[5] Yin J X, Ma W L, Cochran T A, et al. 2020 Nature 583 533
[6] Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C and Chen Y L 2019 Science 365 1282
[7] Liu E K, Sun Y, Kumar N, et al. 2018 Nat. Phys. 14 1125
[8] Markiewicz, R S 1997 J. Phys. Chem. Solids 58 1179
[9] Wang W S, Li Z Z, Xiang Y Y and Wang Q H 2013 Phys. Rev. B 87 115135
[10] Kiesel M L, Platt C and Thomale R 2013 Phys. Rev. Lett. 110 126405
[11] Regnault N, Xu Y F, Li M R, Ma, D S, Jovanovic M, Yazdani A, Parkin S P, Felser C, Schoop L M, Ong N P, Cava R J, Elcoro L, Song Z D and Bernevig B A 2022 Nature 603 824
[12] Miyahara S, Kusuta S and Furukawa N 2007 Physica C 460-462 1145
[13] Tang E, Mei J W and Wen X G 2011 Phys. Rev. Lett. 106 236802
[14] Wu C, Bergman D, Balents L and Das Sarma S 2007 Phys. Rev. Lett. 99 070401
[15] Kang M G, Fang S A, Kim K J, Ortiz B R, Ryu S H, Kim J M, Yoo J G, Sangiovanni G, Sante D D, Park B G, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Wilson S D, Park J H and Comin R 2022 Nat. Phys. 18 301
[16] Nie L P, Sun K L, Ma W, et al. 2022 Nature 604 59
[17] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J F and Wilson S D 2020 Phys. Rev. Lett. 125 247002
[18] Jiang Z C, Liu Z T, Ma H Y, Xia W, Liu Z H, Liu J S, Cho S, Yang Y C, Ding J Y, Liu J Y, Huang Z, Qiao Y X, Shen J J, Jing W C, Liu X Q, Liu J P, Guo Y F and Shen D W 2023 Nat. Commun. 14 4892
[19] Liu Z Z, Li M, Wang Q, Wang G W, Wen C H P, Jiang K, Lu X, Yan S C, Huang Y B, Shen D W, Yin J X, Wang Z P, Lei H C and Wang S C 2020 Nat. Commun. 11 4002
[20] Li M, Wang Q, Wang G W, Yuan Z H, Song W H, Lou R, Liu Z T, Huang Y B, Liu Z H, Lei H C, Yin Z P and Wang S C 2021 Nat. Commun. 12 3129
[21] Liu Z H, Zhao N N, Li M, Yin Q W, Wang Q, Liu Z T, Shen D W, Huang Y B, Lei H C, Liu K and Wang S C 2021 Phys. Rev. B 104 115122
[22] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[23] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[24] Blöchl P E 1994 Phys.Rev. B 50 17953
[25] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[26] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[27] Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272
[28] Wang J, Jorda J L, Pisch A and Flükiger R 2006 Intermetallics 14 695
[29] Lv B Q, Qian T and Ding H 2019 Nat. Rev. Phys. 1 609
[30] Ma J Z, He J B, Xu Y F, et al. 2018 Nat. Phys. 14 349
[31] Lv B Q, Feng Z L, Xu Q N, Gao X, Ma J Z, Kong L Y, Richard P, Huang Y B, Strocov V N, Fang C, Weng H M, Shi Y G, Qian T and Ding H 2017 Nature 546 627
[32] Zhang P, Richard P, Qian T, Xu Y M, Dai X and Ding H 2011 Rev. Sci. Instrum. 82 043712
[33] Marzouk N, Craig R S and Wallace W E 1973 J. Phys. Chem. Solids 34 15
[34] Cao Y, Fatemi V, Demir Ahmet, Fang S A, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K J, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80
[35] Cao Y, Fatemi V, Fang S A, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[36] Stewart G R 1984 Rev. Mod. Phys. 56 755
[37] Poelchen G, Rusinov I P, Schulz S, et al. 2022 ACS Nano 16 3573
[38] Chen Q Y, Xu D F, Niu X H, et al. 2017 Phys. Rev. B 96 045107
[39] Chen Q Y, Xu D F, Niu X H, Peng R, Xu H C, Wen C H P, Liu X, Shu L, Tan S Y, Lai X C, Zhang Y J, Lee H, Strocov V N, Bisti F, Dudin P, Zhu J X, Yuan H Q, Kirchner S and Feng D L 2018 Phys. Rev. Lett. 120 066403
[40] Musil O, Svoboda P and Sechovský V 2005 Physica B 359-361 281
[41] Andres K, Graebner J E and Ott H R 1975 Phys. Rev. Lett. 35 1779
[42] Coldea M, Andreica D, Bitu M and Crisan V 1996 J. Magn. Magn. Mater. 157-158 627
[1] Crystal growth, magnetic and electrical transport properties of the kagome magnet RCr6Ge6 (R=Gd-Tm)
Xingyu Yang(杨星宇), Qingqi Zeng(曾庆祺), Miao He(何苗), Xitong Xu(许锡童), Haifeng Du(杜海峰), and Zhe Qu(屈哲). Chin. Phys. B, 2024, 33(7): 077501.
[2] Absence of BCS-BEC crossover in FeSe0.45Te0.55 superconductor
Junjie Jia(贾俊杰), Yadong Gu(谷亚东), Chaohui Yin(殷超辉), Yingjie Shu(束英杰), Yiwen Chen(陈逸雯), Jumin Shi(史聚民), Xing Zhang(张杏), Hao Chen(陈浩), Taimin Miao(苗泰民), Xiaolin Ren(任晓琳), Bo Liang(梁波), Wenpei Zhu(朱文培), Neng Cai(蔡能), Fengfeng Zhang(张丰丰), Shenjin Zhang(张申金), Feng Yang(杨峰), Zhimin Wang(王志敏), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Hanqing Mao(毛寒青), Guodong Liu(刘国东), Zhian Ren(任治安), Lin Zhao(赵林), and Xing-Jiang Zhou(周兴江). Chin. Phys. B, 2024, 33(7): 077404.
[3] Gate-field control of valley polarization in valleytronics
Ting-Ting Zhang(张婷婷), Yilin Han(韩依琳), Run-Wu Zhang(张闰午), and Zhi-Ming Yu(余智明). Chin. Phys. B, 2024, 33(6): 067303.
[4] Reanalysis of energy band structure in the type-II quantum wells
Xinxin Li(李欣欣), Zhen Deng(邓震), Yang Jiang(江洋), Chunhua Du(杜春花), Haiqiang Jia(贾海强), Wenxin Wang(王文新), and Hong Chen(陈弘). Chin. Phys. B, 2024, 33(6): 067302.
[5] Superconductivity in kagome metal ThRu3Si2
Yi Liu(刘艺), Jing Li(厉静), Wu-Zhang Yang(杨武璋), Jia-Yi Lu(卢佳依), Bo-Ya Cao(曹博雅), Hua-Xun Li(李华旬), Wan-Li Chai(柴万力), Si-Qi Wu(武思祺), Bai-Zhuo Li(李佰卓), Yun-Lei Sun(孙云蕾), Wen-He Jiao(焦文鹤), Cao Wang(王操), Xiao-Feng Xu(许晓峰), Zhi Ren(任之), and Guang-Han Cao(曹光旱). Chin. Phys. B, 2024, 33(5): 057401.
[6] Layered kagome compound Na2Ni3S4 with topological flat band
Junyao Ye(叶君耀), Yihao Lin(林益浩), Haozhe Wang(王浩哲), Zhida Song(宋志达), Ji Feng(冯济), Weiwei Xie(谢韦伟), and Shuang Jia(贾爽). Chin. Phys. B, 2024, 33(5): 057103.
[7] Negative magnetoresistance in the antiferromagnetic semimetal V1/3TaS2
Zi Wang(王子), Xin Peng(彭馨), Shengnan Zhang(张胜男), Yahui Su(苏亚慧), Shaodong Lai(赖少东), Xuan Zhou(周旋), Chunxiang Wu(吴春翔), Tingyu Zhou(周霆宇), Hangdong Wang(王杭栋), Jinhu Yang(杨金虎), Bin Chen(陈斌), Huifei Zhai(翟会飞), Quansheng Wu(吴泉生), Jianhua Du(杜建华), Zhiwei Jiao(焦志伟), and Minghu Fang(方明虎). Chin. Phys. B, 2024, 33(3): 037301.
[8] Band structures of strained kagome lattices
Luting Xu(徐露婷) and Fan Yang(杨帆). Chin. Phys. B, 2024, 33(2): 027101.
[9] Observation of flat-band localized state in a one-dimensional diamond momentum lattice of ultracold atoms
Chao Zeng(曾超), Yue-Ran Shi(石悦然), Yi-Yi Mao(毛一屹), Fei-Fei Wu(武菲菲), Yan-Jun Xie(谢岩骏), Tao Yuan(苑涛), Han-Ning Dai(戴汉宁), and Yu-Ao Chen(陈宇翱). Chin. Phys. B, 2024, 33(1): 010303.
[10] Single crystal growth and electronic structure of Rh-doped Sr3Ir2O7
Bingqian Wang(王冰倩), Shuting Peng(彭舒婷), Zhipeng Ou(欧志鹏), Yuchen Wang(王宇晨), Muhammad Waqas, Yang Luo(罗洋), Zhiyuan Wei(魏志远), Linwei Huai(淮琳崴), Jianchang Shen(沈建昌), Yu Miao(缪宇), Xiupeng Sun(孙秀鹏), Yuewei Yin(殷月伟), and Junfeng He(何俊峰). Chin. Phys. B, 2023, 32(8): 087108.
[11] Multiple surface states, nontrivial band topology, and antiferromagnetism in GdAuAl4Ge2
Chengcheng Zhang(张成成), Yuan Wang(王渊), Fayuan Zhang(张发远), Hongtao Rong(戎洪涛), Yongqing Cai(蔡永青), Le Wang(王乐), Xiao-Ming Ma(马小明), Shu Guo(郭抒), Zhongjia Chen(陈仲佳), Yanan Wang(王亚南), Zhicheng Jiang(江志诚), Yichen Yang(杨逸尘), Zhengtai Liu(刘正太), Mao Ye(叶茂), Junhao Lin(林君浩), Jiawei Mei(梅佳伟), Zhanyang Hao(郝占阳), Zijuan Xie(谢子娟), and Chaoyu Chen(陈朝宇). Chin. Phys. B, 2023, 32(7): 077401.
[12] Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy
Zilu Wang(王子禄), Haoyu Dong(董皓宇), Weichang Zhou(周伟昌), Zhihai Cheng(程志海), and Shancai Wang(王善才). Chin. Phys. B, 2023, 32(6): 067103.
[13] Machine learning of the Γ-point gap and flat bands of twisted bilayer graphene at arbitrary angles
Xiaoyi Ma(马宵怡), Yufeng Luo(罗宇峰), Mengke Li(李梦可), Wenyan Jiao(焦文艳), Hongmei Yuan(袁红梅), Huijun Liu(刘惠军), and Ying Fang(方颖). Chin. Phys. B, 2023, 32(5): 057306.
[14] Spin reorientation in easy-plane kagome ferromagnet Li9Cr3(P2O7)3(PO4)2
Yuanhao Dong(董元浩), Ying Fu(付盈), Yixuan Liu(刘以轩), Zhanyang Hao(郝占阳), Le Wang(王乐), Cai Liu(刘才), Ke Deng(邓可), and Jiawei Mei(梅佳伟). Chin. Phys. B, 2023, 32(5): 057506.
[15] Tunable caging of excitation in decorated Lieb-ladder geometry with long-range connectivity
Atanu Nandy. Chin. Phys. B, 2023, 32(12): 127201.
No Suggested Reading articles found!