|
|
Visualizing the electronic structure of kagome magnet LuMn6Sn6 by angle-resolved photoemission spectroscopy |
Man Li(李满)1,†, Qi Wang(王琦)2, Liqin Zhou(周丽琴)3,4, Wenhua Song(宋文华)2, Huan Ma(马欢)2, Pengfei Ding(丁鹏飞)2, Alexander Fedorov5,6,7, Yaobo Huang(黄耀波)8, Bernd Büchner5,9, Hechang Lei(雷和畅)2,‡, Shancai Wang(王善才)2,§, and Rui Lou(娄睿)5,6,7,¶ |
1 School of Information Network Security, People's Public Security University of China, Beijing 100038, China; 2 Department of Physics, Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), and Beijing Key Laboratory of Opto-electronic Functional Materials & Micronano Devices, Renmin University of China, Beijing 100872, China; 3 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 4 University of Chinese Academy of Sciences, Beijing 100049, China; 5 Leibniz Institute for Solid State and Materials Research, IFW Dresden, Dresden 01069, Germany; 6 Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, Berlin 12489, Germany; 7 Joint Laboratory "Functional Quantum Materials" at BESSY II, Berlin 12489, Germany; 8 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China; 9 Institute for Solid State and Materials Physics, TU Dresden, Dresden 01062, Germany |
|
|
Abstract Searching for the dispersionless flat band (FB) in quantum materials, especially in topological systems, becomes an interesting topic. The kagome lattice is an ideal platform for such exploration because the FB can be naturally induced by the underlying destructive interference. Nevertheless, the magnetic kagome system that hosts the FB close to the Fermi level ($E_{\rm F}$) is exceptionally rare. Here, we study the electronic structure of a kagome magnet LuMn$_6$Sn$_6$ by combining angle-resolved photoemission spectroscopy and density functional theory calculations. The observed Fermi-surface topology and overall band dispersions are similar to previous studies of the $X$Mn$_6$Sn$_6$ ($X = {\rm Dy}$, Tb, Gd, Y) family of compounds. We clearly observe two kagome-derived FBs extending through the entire Brillouin zone, and one of them is located just below $E_{\rm F}$. The photon-energy-dependent measurements reveal that these FBs are nearly dispersionless along the $k_z$ direction as well, supporting the quasi-two-dimensional character of such FBs. Our results complement the $X$Mn$_6$Sn$_6$ family and demonstrate the robustness of the FB features across this family.
|
Received: 22 July 2024
Revised: 02 September 2024
Accepted manuscript online: 14 September 2024
|
PACS:
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
79.60.-i
|
(Photoemission and photoelectron spectra)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12204536), the Fundamental Research Funds for the Central Universities, and the Research Funds of People’s Public Security University of China (PPSUC) (Grant No. 2023JKF02ZK09). |
Corresponding Authors:
Man Li, Hechang Lei, Shancai Wang, Rui Lou
E-mail: lmrucphys@ruc.edu.cn;hlei@ruc.edu.cn;scw@ruc.edu.cn;lourui09@gmail.com
|
Cite this article:
Man Li(李满), Qi Wang(王琦), Liqin Zhou(周丽琴), Wenhua Song(宋文华), Huan Ma(马欢), Pengfei Ding(丁鹏飞), Alexander Fedorov, Yaobo Huang(黄耀波), Bernd Büchner, Hechang Lei(雷和畅), Shancai Wang(王善才), and Rui Lou(娄睿) Visualizing the electronic structure of kagome magnet LuMn6Sn6 by angle-resolved photoemission spectroscopy 2024 Chin. Phys. B 33 117101
|
[1] Chen S, He M, Zhang Y H, Hsieh V, Fei Z, Watanabe K, Taniguchi T, Cobden D H, Xu X, Dean C R and Yankowitz M 2021 Nat. Phys. 17 374 [2] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [3] Lisi S, Lu X, Benschop T, et al. 2021 Nat. Phys. 17 189 [4] Han T, Lu Z, Scuri G, Sung J, Wang J, Han T, Watanabe K, Taniguchi T, Park H and Ju L 2024 Nat. Nanotechnol. 19 181 [5] Neupert T, Denner M M, Yin J X, Thomale R and Hasan M Z 2022 Nat. Phys. 18 137 [6] Teng X, Chen L, Ye F, Rosenberg E, Liu Z, Yin J X, Jiang Y X, Oh J S, Hasan M Z, Neubauer K J, Gao B, Xie Y, Hashimoto M, Lu D, Jozwiak C, Bostwick A, Rotenberg E, Birgeneau R J, Chu J H, Yi M and Dai P 2022 Nature 609 490 [7] Lou R, Fedorov A, Yin Q, Kuibarov A, Tu Z, Gong C, Schwier E F, Büchner B, Lei H and Borisenko S 2022 Phys. Rev. Lett. 128 036402 [8] Ko W H, Lee P A and Wen X G 2009 Phys. Rev. B 79 214502 [9] Kiesel M L, Platt C and Thomale R 2013 Phys. Rev. Lett. 110 126405 [10] Zhong Y, Liu J, Wu X, et al. 2023 Nature 617 488 [11] Xu G, Lian B and Zhang S C 2015 Phys. Rev. Lett. 115 186802 [12] Yin J X, Ma W, Cochran T A, et al. 2020 Nature 583 533 [13] Zhang T, Yilmaz T, Vescovo E, Li H X, Moore R G, Lee H N, Miao H, Murakami S and McGuire M A 2022 npj Comput. Mater. 8 155 [14] Wang Y, Wu H, McCandless G T, Chan J Y and Ali M N 2023 Nat. Rev. Phys. 5 635 [15] Peng S, Han Y, Pokharel G, Shen J, Li Z, Hashimoto M, Lu D, Ortiz B R, Luo Y, Li H, Guo M, Wang B, Cui S, Sun Z, Qiao Z, Wilson S D and He J 2021 Phys. Rev. Lett. 127 266401 [16] Yin J X, Lian B and Hasan M Z 2022 Nature 612 647 [17] Liu Z, Liu F and Wu Y S 2014 Chin. Phys. B 23 077308 [18] Ohgushi K, Murakami S and Nagaosa N 2000 Phys. Rev. B 62 R6065 [19] Sun K, Gu Z, Katsura H and Das Sarma S 2011 Phys. Rev. Lett. 106 236803 [20] Venderbos J W F, Daghofer M and van den Brink J 2011 Phys. Rev. Lett. 107 116401 [21] Neupert T, Santos L, Chamon C and Mudry C 2011 Phys. Rev. Lett. 106 236804 [22] Tang E, Mei J W and Wen X G 2011 Phys. Rev. Lett. 106 236802 [23] Liu Z, Wang Z F, Mei J W, Wu Y S and Liu F 2013 Phys. Rev. Lett. 110 106804 [24] Mielke A 1991 J. Phys. A: Math. General 24 3311 [25] Mielke A 1992 J. Phys. A: Math. General 25 4335 [26] Imada M and Kohno M 2000 Phys. Rev. Lett. 84 143 [27] Peotta S and Törmä P 2015 Nat. Commun. 6 8944 [28] Huber S D and Altman E 2010 Phys. Rev. B 82 184502 [29] Wu C, Bergman D, Balents L and Das Sarma S 2007 Phys. Rev. Lett. 99 070401 [30] Jiang Y X, Yin J X, Denner M M, et al. 2021 Nat. Mater. 20 1353 [31] Yang S Y, Wang Y, Ortiz B R, Liu D, Gayles J, Derunova E, GonzalezHernandez R, Smejkal L, Chen Y, Parkin S S P, Wilson S D, Toberer E S, McQueen T and Ali M N 2020 Sci. Adv. 6 eabb6003 [32] Mielke C, Das D, Yin J X, et al. 2022 Nature 602 245 [33] Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M, Wang Z, Balents L, Wilson S D and Zeljkovic I 2021 Nature 599 216 [34] Chen H, Yang H, Hu B, Zhao Z, Yuan J, Xing Y, Qian G, Huang Z, Li G, Ye Y, Ma S, Ni S, Zhang H, Yin Q, Gong C, Tu Z, Lei H, Tan H, Zhou S, Shen C, Dong X, Yan B, Wang Z and Gao H J 2021 Nature 599 222 [35] Chen K Y, Wang N N, Yin Q W, Gu Y H, Jiang K, Tu Z J, Gong C S, Uwatoko Y, Sun J P, Lei H C, Hu J P and Cheng J G 2021 Phys. Rev. Lett. 126 247001 [36] Yu F H, Ma D H, Zhuo W Z, Liu S Q, Wen X K, Lei B, Ying J J and Chen X H 2021 Nat. Commun. 12 3645 [37] Nie L, Sun K, Ma W, Song D, Zheng L, Liang Z, Wu P, Yu F, Li J, Shan M, Zhao D, Li S, Kang B, Wu Z, Zhou Y, Liu K, Xiang Z, Ying J, Wang Z, Wu T and Chen X 2022 Nature 604 59 [38] Arachchige H W S, Meier W R, Marshall M, Matsuoka T, Xue R, McGuire M A, Hermann R P, Cao H and Mandrus D 2022 Phys. Rev. Lett. 129 216402 [39] Hu T, Pi H, Xu S, Yue L, Wu Q, Liu Q, Zhang S, Li R, Zhou X, Yuan J, Wu D, Dong T, Weng H and Wang N 2023 Phys. Rev. B 107 165119 [40] Hu Y, Ma J, Li Y, Gawryluk D J, Hu T, Teyssier J, Multian V, Yin Z, Jiang Y, Xu S, Shin S, Plokhikh I, Han X, Plumb N C, Liu Y, Yin J, Guguchia Z, Zhao Y, Schnyder A P, Wu X, Pomjakushina E, Hasan M Z, Wang N and Shi M 2023 2024 Nat. Commun. 15 1658 [41] Korshunov A, Hu H, Subires D, Jiang Y, Čalugˇaru D, Feng X, Rajapitamahuni A, Yi C, Roychowdhury S, Vergniory M G, Strempfer J, Shekhar C, Vescovo E, Chernyshov D, Said A H, Bosak A, Felser C, Bernevig B A and Blanco-Canosa S 2023 Nat. Commun. 14 6646 [42] Pokharel G, Ortiz B, Chamorro J, Sarte P, Kautzsch L, Wu G, Ruff J and Wilson S D 2022 Phys. Rev. Mater. 6 104202 [43] Haldane F D M 2004 Phys. Rev. Lett. 93 206602 [44] Ma W, Xu X, Wang Z, Zhou H, Marshall M, Qu Z, Xie W and Jia S 2021 Phys. Rev. B 103 235109 [45] Ma W, Xu X, Yin J X, Yang H, Zhou H, Cheng Z J, Huang Y, Qu Z, Wang F, Hasan M Z and Jia S 2021 Phys. Rev. Lett. 126 246602 [46] Dhakal G, Cheenicode Kabeer F, Pathak A K, Kabir F, Poudel N, Filippone R, Casey J, Pradhan Sakhya A, Regmi S, Sims C, Dimitri K, Manfrinetti P, Gofryk K, Oppeneer P M and Neupane M 2021 Phys. Rev. B 104 L161115 [47] Chen D, Le C, Fu C, Lin H, Schnelle W, Sun Y and Felser C 2021 Phys. Rev. B 103 144410 [48] Gu X, Chen C, Wei W S, et al. 2022 Phys. Rev. B 105 155108 [49] Wang Q, Neubauer K J, Duan C, Yin Q, Fujitsu S, Hosono H, Ye F, Zhang R, Chi S, Krycka K, Lei H and Dai P 2021 Phys. Rev. B 103 014416 [50] Liu Z, Zhao N, Li M, Yin Q, Wang Q, Liu Z, Shen D, Huang Y, Lei H, Liu K and Wang S 2021 Phys. Rev. B 104 115122 [51] Li M, Wang Q, Wang G, Yuan Z, Song W, Lou R, Liu Z, Huang Y, Liu Z, Lei H, Yin Z and Wang S 2021 Nat. Commun. 12 3129 [52] Venturini G, Fruchart D and Malaman B 1996 J. Alloys Compd. 236 102 [53] Hüfner S 2003 Photoelectron Spectroscopy: Principles and Applications (Berlin: Springer) [54] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [55] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [56] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [57] Kulik H J, Cococcioni M, Scherlis D A and Marzari N 2006 Phys. Rev. Lett. 97 103001 [58] Shirley E L, Terminello L J, Santoni A and Himpsel F J 1995 Phys. Rev. B 51 13614 [59] Kang M, Fang S, Ye L, Po H C, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Checkelsky J G and Comin R 2020 Nat. Commun. 11 4004 [60] Liu Z, Li M, Wang Q, Wang G, Wen C, Jiang K, Lu X, Yan S, Huang Y, Shen D, Yin J X, Wang Z, Yin Z, Lei H and Wang S 2020 Nat. Commun. 11 4002 [61] Li H, Zhao H, Jiang K, Wang Q, Yin Q, Zhao N N, Liu K, Wang Z, Lei H and Zeljkovic I 2022 Nat. Phys. 18 644 [62] Ghimire N J, Dally R L, Poudel L, Jones D C, Michel D, Magar N T, Bleuel M, McGuire M A, Jiang J S, Mitchell J F, Lynn J W and Mazin I I 2020 Sci. Adv. 6 eabe2680 [63] Li L, Chi S, Ma W, Guo K, Xu G and Jia S 2024 Chin. Phys. B 33 057501 [64] Yin J X, Zhang S S, Li H, et al. 2018 Nature 562 91 [65] Lou R, Zhou L, Song W, Fedorov A, Tu Z, Jiang B, Wang Q, Li M, Liu Z, Chen X, Rader O, Büchner B, Sun Y, Weng H, Lei H and Wang S 2023 arXiv: 2309.06399 [cond-mat.str-el] [66] Yang T Y, Wan Q, Song J P, Du Z, Tang J, Wang Z W, Plumb N C, Radovic M, Wang G W, Wang G Y, Sun Z, Yin J X, Chen Z H, Huang Y B, Yu R, Shi M, Xiong Y M and Xu N 2022 Quantum Frontiers 1 14 [67] Song B, Xie Y, Li W J, Liu H, Zhang Q, gang Guo J, Zhao L, Yu S L, Zhou X, Chen X and Ying T 2024 arXiv:2404.12374 [cond-mat.str-el] |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|