Special Issue:
SPECIAL TOPIC — Recent progress on kagome metals and superconductors
|
SPECIAL TOPIC—Recent progress on kagome metals and superconductors |
Prev
Next
|
|
|
Superconductivity in kagome metal ThRu3Si2 |
Yi Liu(刘艺)1,2,†,‡, Jing Li(厉静)1,†, Wu-Zhang Yang(杨武璋)3, Jia-Yi Lu(卢佳依)1, Bo-Ya Cao(曹博雅)2, Hua-Xun Li(李华旬)1, Wan-Li Chai(柴万力)1, Si-Qi Wu(武思祺)1, Bai-Zhuo Li(李佰卓)4, Yun-Lei Sun(孙云蕾)5, Wen-He Jiao(焦文鹤)2, Cao Wang(王操)4, Xiao-Feng Xu(许晓峰)2, Zhi Ren(任之)3, and Guang-Han Cao(曹光旱)1,6,7,§ |
1 School of Physics, Zhejiang University, Hangzhou 310058, China; 2 Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China; 3 School of Science, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310064, China; 4 Department of Physics, Shandong University of Technology, Zibo 255049, China; 5 School of Information and Electrical Engineering, Zhejiang University City College, Hangzhou 310015, China; 6 Interdisciplinary Center for Quantum Information, and State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, China; 7 Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China |
|
|
Abstract We report the physical properties of ThRu$_3$Si$_2$ featured with distorted Ru kagome lattice. The combined experiments of resistivity, magnetization and specific heat reveal bulk superconductivity with $T_{\rm{c}}= 3.8$ K. The specific heat jump and calculated electron-phonon coupling indicate a moderate coupled BCS superconductor. In comparison with LaRu$_3$Si$_2$, the calculated electronic structure in ThRu$_3$Si$_2$ shows an electron-doping effect with electron filling lifted from 100 meV below flat bands to 300 meV above it. This explains the lower superconducting transition temperature and weaker electron correlations observed in ThRu$_3$Si$_2$. Our work suggests the $T_{\rm{c}}$ and electronic correlations in the kagome superconductor could have an intimate connection with the flat bands.
|
Received: 22 December 2023
Revised: 05 January 2024
Accepted manuscript online: 09 January 2024
|
PACS:
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
74.25.-q
|
(Properties of superconductors)
|
|
74.25.Ha
|
(Magnetic properties including vortex structures and related phenomena)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12050003, 12004337, and 12274369) and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ21A040011). |
Corresponding Authors:
Yi Liu, Guang-Han Cao
E-mail: liuyiphy@zjut.edu.cn;ghcao@zju.edu.cn
|
Cite this article:
Yi Liu(刘艺), Jing Li(厉静), Wu-Zhang Yang(杨武璋), Jia-Yi Lu(卢佳依), Bo-Ya Cao(曹博雅), Hua-Xun Li(李华旬), Wan-Li Chai(柴万力), Si-Qi Wu(武思祺), Bai-Zhuo Li(李佰卓), Yun-Lei Sun(孙云蕾), Wen-He Jiao(焦文鹤), Cao Wang(王操), Xiao-Feng Xu(许晓峰), Zhi Ren(任之), and Guang-Han Cao(曹光旱) Superconductivity in kagome metal ThRu3Si2 2024 Chin. Phys. B 33 057401
|
[1] Yin J X, Lian B and Hasan M Z 2022 Nature 612 647 [2] Chowdhury N, Khan K I A, Bangar H, Gupta P, Yadav R S, Agarwal R, Kumar A and Muduli P K 2023 Proceedings of The National Academy of Sciences India Section A-Physical Sciences 93 477 [3] Han T H, Helton J S, Chu S, Nocera D G, Rodriguez-Rivera J A, Broholm C and Lee Y S 2012 Nature 492 406 [4] Yan S, Huse D A and White S R 2011 Science 332 1173 [5] Balents L 2010 Nature 464 199 [6] Olariu A, Mendels P, Bert F, Duc F, Trombe J C, de Vries M A and Harrison A 2008 Phys. Rev. Lett. 100 087202 [7] Xue H, Yang Y, Gao F, Chong Y and Zhang B 2019 Nat. Mater. 18 108 [8] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q, Kroder J, Suess V, Borrmann H, Shekhar C, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125 [9] Ye L, Kang M, Liu J, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature 555 638 [10] Peng C, Jiang Y F, Sheng D N and Jiang H C 2021 Adv. Quantum Technol. 4 2000126 [11] Wang Q, Qiu X L, Pei C, Gong B C, Gao L, Zhao Y, Cao W, Li C, Zhu S, Zhang M, Chen Y, Liu K and Qi Y 2023 New J. Phys. 25 043001 [12] Jiang K, Wu T, Yin J X, Wang Z, Hasan M Z, Wilson S D, Chen X and Hu J 2023 Natl. Sci. Rev. 10 nwac199 [13] Chen H, Hu B, Ye Y, Yang H and Gao H J 2022 Chin. Phys. B 31 097405 [14] Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R and Wilson S D 2021 Phys. Rev. Mater. 5 034801 [15] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J and Wilson S D 2020 Phys. Rev. Lett. 125 247002 [16] Ni S, Ma S, Zhang Y, Yuan J, Yang H, Lu Z, Wang N, Sun J, Zhao Z, Li D, Liu S, Zhang H, Chen H, Jin K, Cheng J, Yu L, Zhou F, Dong X, Hu J, Gao H J and Zhao Z 2021 Chin. Phys. Lett. 38 057403 [17] Bilitewski T and Moessner R 2018 Phys. Rev. B 98 235109 [18] Bergman D L, Wu C and Balents L 2008 Phys. Rev. B 78 125104 [19] Liu Y, Liu Z Y, Bao J K, Yang P T, Ji L W, Liu J Y, Xu C C, Yang W Z, Chai W L, Lu J Y, Liu C C, Wang B S, Jiang H, Tao Q, Ren Z, Xu X F, Cao C, Xu Z A, Cheng J G and Cao G H 2023 arXiv:2309.13514 [cond-mat.supr-con] [20] Ku H, Meisner G, Acker F and Johnston D 1980 Solid State Commun. 35 91 [21] Barz H 1980 Mater. Res. Bull. 15 1489 [22] Godart C, Gupta L, Parks R, Rauschwalbe U, Alheim U, Gottwick U, Lieke W and Steglich F 1984 Ann. Chim.-Sci. Mat. 9 979 [23] Rauchschwalbe U, Lieke W, Steglich F, Godart C, Gupta L and Parks R 1984 Phys. Rev. B 30 444 [24] Gui X and Cava R J 2022 Chem. Mater. 34 2824 [25] Li S, Zeng B, Wan X, Tao J, Han F, Yang H, Wang Z and Wen H H 2011 Phys. Rev. B 84 214527 [26] Mielke C, Qin Y, Yin J X, Nakamura H, Das D, Guo K, Khasanov R, Chang J, Wang Z Q, Jia S, Nakatsuji S, Amato A, Luetkens H, Xu G, Hasan M Z and Guguchia Z 2021 Phys. Rev. Mater. 5 034803 [27] Kishimoto Y, Kawasaki Y, Ohno T, Gupta L and Ghosh G 2004 J. Phys. Soc. Jpn. 73 190 [28] Vandenberg J and Barz H 1980 Mater. Res. Bull. 15 1493 [29] Wang C, Wang Z C, Mei Y X, Li Y K, Li L, Tang Z T, Liu Y, Zhang P, Zhai H F, Xu Z A and Cao G H 2016 J. Am. Chem. Soc. 138 2170 [30] Gong C, Tian S, Tu Z, Yin Q, Fu Y, Luo R and Lei H 2022 Chin. Phys. Lett. 39 [31] Gurevich A 2003 Phys. Rev. B 67 184515 [32] Bain G A and Berry J F 2008 J. Chem. Educ. 85 532 [33] Yang H and Lin J 2001 J. Phys. Chem. Solids 62 1861 [34] Mcmillan W 1968 Phys. Rev. 167 331 [35] Li B, Li S and Wen H H 2016 Phys. Rev. B 94 094523 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|