Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 067101    DOI: 10.1088/1674-1056/ad3060
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetism, heat capacity, magnetocaloric effect, and magneto-transport properties of heavy fermion antiferromagnet CeGaSi

Li-Bo Zhang(张黎博)1,2, Qing-Xin Dong(董庆新)1,2, Jian-Li Bai(白建利)1,2, Qiao-Yu Liu(刘乔宇)1,2, Jing-Wen Cheng(程靖雯)1,2, Cun-Dong Li(李存东)1,2, Pin-Yu Liu(刘品宇)1,2, Ying-Rui Sun(孙英睿)1,2, Yu Huang(黄宇)1,2, Zhi-An Ren(任治安)1,2, and Gen-Fu Chen(陈根富)1,2,3,†
1 Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  We synthesize high-quality single crystal of CeGaSi by a Ga self-flux method and investigate its physical properties through magnetic susceptibility, specific heat and electrical resistivity measurements as well as high pressure effect. Magnetic measurements reveal that an antiferromagnetic order develops below $T_{\rm m} \sim 10.4 $K with magnetic moments orientated in the \textit{ab} plane. The enhanced electronic specific heat coefficient and the negative logarithmic slope in the resistivity of CeGaSi indicate that the title compound belongs to the family of Kondo system with heavy fermion ground states. The max magnetic entropy change $-\Delta S_{\mathrm{M}}^{\mathrm{\max}}$ ($\mu_{0}H\bot c$, $\mu_0 H = 7$T) around $T_{\rm m}$ is found to reach up to 11.85J$\cdot$kg$^{-1}$$\cdot$K$^{-1}$. Remarkably, both the antiferromagnetic transition temperature and $-\ln T$ behavior increase monotonically with pressure applied to 20kbar (1bar$=$10$^5$Pa), indicating that much higher pressure will be needed to reach its quantum critical point.
Keywords:  heavy fermion      antiferromagnetic order      magnetocaloric effect  
Received:  22 February 2024      Revised:  04 March 2024      Accepted manuscript online:  06 March 2024
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.30.Gw (Magnetic anisotropy)  
  71.20.Eh (Rare earth metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12274440), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB33010100), the Fund from the Ministry of Science and Technology of China (Grant No. 2022YFA1403903), and the Fund of the Synergetic Extreme Condition User Facility (SECUF).
Corresponding Authors:  Gen-Fu Chen     E-mail:  gfchen@iphy.ac.cn

Cite this article: 

Li-Bo Zhang(张黎博), Qing-Xin Dong(董庆新), Jian-Li Bai(白建利), Qiao-Yu Liu(刘乔宇), Jing-Wen Cheng(程靖雯), Cun-Dong Li(李存东), Pin-Yu Liu(刘品宇), Ying-Rui Sun(孙英睿), Yu Huang(黄宇), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富) Magnetism, heat capacity, magnetocaloric effect, and magneto-transport properties of heavy fermion antiferromagnet CeGaSi 2024 Chin. Phys. B 33 067101

[1] Chang G, Singh B, Xu S Y, et al. 2018 Phys. Rev. B 97 041104
[2] Yang H Y, Singh B, Gaudet J, et al. 2021 Phys. Rev. B 103 115143
[3] Yang H Y, Gaudet J, Verma R, Baidya S, Bahrami F, Yao X H, Huang C Y, DeBeer-Schmitt L, Aczel AA, Xu GY, Lin H, Bansil A, Singh B and Tafti F 2023 Phys. Rev. Mater. 7 034202
[4] Wang J F, Dong Q X, Huang Y F, Wang Z S, Guo Z P, Wang Z J, Ren Z A, Li G, Sun P J, Dai X and Chen G F 2023 Phys. Rev. B 108 024423
[5] Puphal P, Pomjakushin V, Kanazawa N, Ukleev V, Gawryluk D J, Ma J, Naamneh M, Plumb N C, Keller L, Cubitt R, Pomjakushina E and White J S 2020 Phys. Rev. Lett. 124 017202
[6] Hodovanets H, Eckberg C J, Zavalij P Y, Kim H, Lin W C, Zic M, Campbell D J, Higgins J S and Paglione J 2018 Phys. Rev. B 98 245132
[7] Wang J F, Dong Q X, Guo Z P, Lv M, Huang Y F, Xiang J S, Ren Z A, Wang Z J, Sun P J, Li G and Chen G F 2022 Phys. Rev. B 105 144435
[8] Dong Q X, Wang J F, Zhang L B, Bai J L, Liu Q Y, Cheng J W, Liu P Y, Li C D, Xiang J S, Ren Z A, Sun P J and Chen G F 2023 Phys. Rev. B 108 205143
[9] Priolkar K R, Prabhu R B, Sarode P R, Ganesan V, Raj P and Sathyamoorthy A 1998 J. Phys.: Condens. Matter 10 4413
[10] Dhar S K, Pattalwar S M and Vijayaraghavan R 1993 Solid State Commun. 87 409
[11] Priolkar K R, Pattalwar S M, Mishra P K, Raj P, Sathyamoorthy A, Dhar S K, Sahni V C, Sarode P R and Prabhu R B 1997 Solid State Commun. 104 71
[12] Mori H, Sato N and Sato T 1984 Solid State Commun. 49 955
[13] Synoradzki K, Skokowski P, Frąckowiak Ł, Koterlyn M and Toliński T 2022 J. Magn. Magn. Mater. 547 168886
[14] Priolkar K R, Rao M N, Prabhu R B, Sarode P R, Paranjpe S K, Raj P and Sathyamoorthy A 1998 J. Magn. Magn. Mater. 185 375
[15] Darone GM, Hmiel B, Zhang J, Saha S, Kirshenbaum K, Greene R, Paglione J and Bobev S 2013 J. Solid State Chem. 201 191
[16] Dhar S K 1994 J. Magn. Magn. Mater. 129 259
[17] Moshchalkov V V, Petrenko O V and Zalyalyutdinov M K 1990 Physica B 163 395
[18] Yashima H, Satoh T, Mori H, Watanabe D and Ohtsuka T 1982 Solid State Commun. 41 1
[19] Umehara I, Nagai N and Ōnuki Y 1991 J. Phys. Soc. Jpn. 60 1464
[20] GschneidnerJr K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[21] Lima Sharma A L, Bobev S and Sarrao J L 2007 J. Magn. Magn. Mater. 312 400
[22] dos Reis R D, da Silva L M, dos Santos A O, Medina A M, Cardoso L P and Gandra F G 2010 J. Phys.: Condens. Matter 22 486002
[23] Yashima H, Mori H, Sato N, Satoh T and Kohn K 1983 J. Magn. Magn. Mater. 31-34 411
[24] Desgranges H U and Schotte K D 1982 Phys. Lett. A 91 240
[25] Horn S, Holland-Moritz E, Loewenhaupt M, Steglich F, Scheuer H, Benoit A and Flouquet J 1981 Phys. Rev. B 23 3171
[26] Lyu M, Wang Z, Ramesh Kumar K, Zhao H, Xiang J and Sun P 2020 J. Appl. Phys. 127 193903
[27] Qiao L, Chen J, Lv B, Yang X, Wu J, Cui Y, Bai H, Li M, Li Y, Ren Z, Dai J and Xu Za 2020 J. Alloys Compd. 836 155229
[28] Lyu M, Zhao H, Zhang J, Wang Z, Zhang S and Sun P 2021 Chin. Phys. B 30 087101
[29] Cornut B and Coqblin B 1972 Phys. Rev. B 5 4541
[30] Pikul A P, Kaczorowski D, Plackowski T, Czopnik A, Michor H, Bauer E, Hilscher G, Rogl P and Grin Y 2003 Phys. Rev. B 67 224417
[31] Mondal R, Bapat R, Dhar S K and Thamizhavel A 2018 Phys. Rev. B 98 115160
[32] Kondo J 1964 Prog. Theor. Phys. 32 37
[33] Kumar S, Ahluwalia P K and Sharma K C 1990 Phys. Rev. B 41 2030
[34] Nishida Y, Tsuruta A and Miyake K 2005 Physica B 359-361 726
[35] He X, Li Y, Zeng H, Zhu Z, Tan S, Zhang Y, Cao C and Luo Y 2023 Sci. China Phys. Mech. Astron. 66 237011
[36] Bauer E D, Lee H O, Sidorov V A, Kurita N, Gofryk K, Zhu J X, Ronning F, Movshovich R, Thompson J D and Park T 2010 Phys. Rev. B 81 180507
[37] Szlawska M and Kaczorowski D 2011 Phys. Rev. B 84 094430
[38] Rojas D P, Rodríguez Fernández J, Espeso J I, and Gómez Sal J C 2010 J. Alloys Compd. 502 275
[39] Schlottmann P 1989 Phys. Rep. 181 1
[40] Kaczorowski D and Slebarski A 2010 Phys. Rev. B 81 214411
[41] Cattaneo E 1986 Z. Phys. B: Condens. Matter 64 305
[42] Fert A and Levy P M 1987 Phys. Rev. B 36 1907
[1] Magnetic and magnetocaloric effect of Er20Ho20Dy20Cu20Ni20 high-entropy metallic glass
Shi-Lin Yu(于世霖), Lu Tian(田路), Jun-Feng Wang(王俊峰), Xin-Guo Zhao(赵新国), Da Li(李达), Zhao-Jun Mo(莫兆军), and Bing Li(李昺). Chin. Phys. B, 2024, 33(5): 057502.
[2] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[3] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[4] Structure, magnetism and magnetocaloric effects in Er5Si3Bx (x=0.3, 0.6) compounds
Zhihong Hao(郝志红), Hui Liu(刘辉), and Juguo Zhang(张聚国). Chin. Phys. B, 2023, 32(11): 117501.
[5] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[6] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[7] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[8] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[9] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[10] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[11] CeAu2In4: A candidate of quasi-one-dimensional antiferromagnetic Kondo lattice
Meng Lyu(吕孟), Hengcan Zhao(赵恒灿), Jiahao Zhang(张佳浩), Zhen Wang(王振), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2021, 30(8): 087101.
[12] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[13] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[14] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[15] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
No Suggested Reading articles found!