CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetism, heat capacity, magnetocaloric effect, and magneto-transport properties of heavy fermion antiferromagnet CeGaSi |
Li-Bo Zhang(张黎博)1,2, Qing-Xin Dong(董庆新)1,2, Jian-Li Bai(白建利)1,2, Qiao-Yu Liu(刘乔宇)1,2, Jing-Wen Cheng(程靖雯)1,2, Cun-Dong Li(李存东)1,2, Pin-Yu Liu(刘品宇)1,2, Ying-Rui Sun(孙英睿)1,2, Yu Huang(黄宇)1,2, Zhi-An Ren(任治安)1,2, and Gen-Fu Chen(陈根富)1,2,3,† |
1 Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract We synthesize high-quality single crystal of CeGaSi by a Ga self-flux method and investigate its physical properties through magnetic susceptibility, specific heat and electrical resistivity measurements as well as high pressure effect. Magnetic measurements reveal that an antiferromagnetic order develops below $T_{\rm m} \sim 10.4 $K with magnetic moments orientated in the \textit{ab} plane. The enhanced electronic specific heat coefficient and the negative logarithmic slope in the resistivity of CeGaSi indicate that the title compound belongs to the family of Kondo system with heavy fermion ground states. The max magnetic entropy change $-\Delta S_{\mathrm{M}}^{\mathrm{\max}}$ ($\mu_{0}H\bot c$, $\mu_0 H = 7$T) around $T_{\rm m}$ is found to reach up to 11.85J$\cdot$kg$^{-1}$$\cdot$K$^{-1}$. Remarkably, both the antiferromagnetic transition temperature and $-\ln T$ behavior increase monotonically with pressure applied to 20kbar (1bar$=$10$^5$Pa), indicating that much higher pressure will be needed to reach its quantum critical point.
|
Received: 22 February 2024
Revised: 04 March 2024
Accepted manuscript online: 06 March 2024
|
PACS:
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
75.30.Sg
|
(Magnetocaloric effect, magnetic cooling)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
71.20.Eh
|
(Rare earth metals and alloys)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12274440), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB33010100), the Fund from the Ministry of Science and Technology of China (Grant No. 2022YFA1403903), and the Fund of the Synergetic Extreme Condition User Facility (SECUF). |
Corresponding Authors:
Gen-Fu Chen
E-mail: gfchen@iphy.ac.cn
|
Cite this article:
Li-Bo Zhang(张黎博), Qing-Xin Dong(董庆新), Jian-Li Bai(白建利), Qiao-Yu Liu(刘乔宇), Jing-Wen Cheng(程靖雯), Cun-Dong Li(李存东), Pin-Yu Liu(刘品宇), Ying-Rui Sun(孙英睿), Yu Huang(黄宇), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富) Magnetism, heat capacity, magnetocaloric effect, and magneto-transport properties of heavy fermion antiferromagnet CeGaSi 2024 Chin. Phys. B 33 067101
|
[1] Chang G, Singh B, Xu S Y, et al. 2018 Phys. Rev. B 97 041104 [2] Yang H Y, Singh B, Gaudet J, et al. 2021 Phys. Rev. B 103 115143 [3] Yang H Y, Gaudet J, Verma R, Baidya S, Bahrami F, Yao X H, Huang C Y, DeBeer-Schmitt L, Aczel AA, Xu GY, Lin H, Bansil A, Singh B and Tafti F 2023 Phys. Rev. Mater. 7 034202 [4] Wang J F, Dong Q X, Huang Y F, Wang Z S, Guo Z P, Wang Z J, Ren Z A, Li G, Sun P J, Dai X and Chen G F 2023 Phys. Rev. B 108 024423 [5] Puphal P, Pomjakushin V, Kanazawa N, Ukleev V, Gawryluk D J, Ma J, Naamneh M, Plumb N C, Keller L, Cubitt R, Pomjakushina E and White J S 2020 Phys. Rev. Lett. 124 017202 [6] Hodovanets H, Eckberg C J, Zavalij P Y, Kim H, Lin W C, Zic M, Campbell D J, Higgins J S and Paglione J 2018 Phys. Rev. B 98 245132 [7] Wang J F, Dong Q X, Guo Z P, Lv M, Huang Y F, Xiang J S, Ren Z A, Wang Z J, Sun P J, Li G and Chen G F 2022 Phys. Rev. B 105 144435 [8] Dong Q X, Wang J F, Zhang L B, Bai J L, Liu Q Y, Cheng J W, Liu P Y, Li C D, Xiang J S, Ren Z A, Sun P J and Chen G F 2023 Phys. Rev. B 108 205143 [9] Priolkar K R, Prabhu R B, Sarode P R, Ganesan V, Raj P and Sathyamoorthy A 1998 J. Phys.: Condens. Matter 10 4413 [10] Dhar S K, Pattalwar S M and Vijayaraghavan R 1993 Solid State Commun. 87 409 [11] Priolkar K R, Pattalwar S M, Mishra P K, Raj P, Sathyamoorthy A, Dhar S K, Sahni V C, Sarode P R and Prabhu R B 1997 Solid State Commun. 104 71 [12] Mori H, Sato N and Sato T 1984 Solid State Commun. 49 955 [13] Synoradzki K, Skokowski P, Frąckowiak Ł, Koterlyn M and Toliński T 2022 J. Magn. Magn. Mater. 547 168886 [14] Priolkar K R, Rao M N, Prabhu R B, Sarode P R, Paranjpe S K, Raj P and Sathyamoorthy A 1998 J. Magn. Magn. Mater. 185 375 [15] Darone GM, Hmiel B, Zhang J, Saha S, Kirshenbaum K, Greene R, Paglione J and Bobev S 2013 J. Solid State Chem. 201 191 [16] Dhar S K 1994 J. Magn. Magn. Mater. 129 259 [17] Moshchalkov V V, Petrenko O V and Zalyalyutdinov M K 1990 Physica B 163 395 [18] Yashima H, Satoh T, Mori H, Watanabe D and Ohtsuka T 1982 Solid State Commun. 41 1 [19] Umehara I, Nagai N and Ōnuki Y 1991 J. Phys. Soc. Jpn. 60 1464 [20] GschneidnerJr K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479 [21] Lima Sharma A L, Bobev S and Sarrao J L 2007 J. Magn. Magn. Mater. 312 400 [22] dos Reis R D, da Silva L M, dos Santos A O, Medina A M, Cardoso L P and Gandra F G 2010 J. Phys.: Condens. Matter 22 486002 [23] Yashima H, Mori H, Sato N, Satoh T and Kohn K 1983 J. Magn. Magn. Mater. 31-34 411 [24] Desgranges H U and Schotte K D 1982 Phys. Lett. A 91 240 [25] Horn S, Holland-Moritz E, Loewenhaupt M, Steglich F, Scheuer H, Benoit A and Flouquet J 1981 Phys. Rev. B 23 3171 [26] Lyu M, Wang Z, Ramesh Kumar K, Zhao H, Xiang J and Sun P 2020 J. Appl. Phys. 127 193903 [27] Qiao L, Chen J, Lv B, Yang X, Wu J, Cui Y, Bai H, Li M, Li Y, Ren Z, Dai J and Xu Za 2020 J. Alloys Compd. 836 155229 [28] Lyu M, Zhao H, Zhang J, Wang Z, Zhang S and Sun P 2021 Chin. Phys. B 30 087101 [29] Cornut B and Coqblin B 1972 Phys. Rev. B 5 4541 [30] Pikul A P, Kaczorowski D, Plackowski T, Czopnik A, Michor H, Bauer E, Hilscher G, Rogl P and Grin Y 2003 Phys. Rev. B 67 224417 [31] Mondal R, Bapat R, Dhar S K and Thamizhavel A 2018 Phys. Rev. B 98 115160 [32] Kondo J 1964 Prog. Theor. Phys. 32 37 [33] Kumar S, Ahluwalia P K and Sharma K C 1990 Phys. Rev. B 41 2030 [34] Nishida Y, Tsuruta A and Miyake K 2005 Physica B 359-361 726 [35] He X, Li Y, Zeng H, Zhu Z, Tan S, Zhang Y, Cao C and Luo Y 2023 Sci. China Phys. Mech. Astron. 66 237011 [36] Bauer E D, Lee H O, Sidorov V A, Kurita N, Gofryk K, Zhu J X, Ronning F, Movshovich R, Thompson J D and Park T 2010 Phys. Rev. B 81 180507 [37] Szlawska M and Kaczorowski D 2011 Phys. Rev. B 84 094430 [38] Rojas D P, Rodríguez Fernández J, Espeso J I, and Gómez Sal J C 2010 J. Alloys Compd. 502 275 [39] Schlottmann P 1989 Phys. Rep. 181 1 [40] Kaczorowski D and Slebarski A 2010 Phys. Rev. B 81 214411 [41] Cattaneo E 1986 Z. Phys. B: Condens. Matter 64 305 [42] Fert A and Levy P M 1987 Phys. Rev. B 36 1907 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|