Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 067102    DOI: 10.1088/1674-1056/ad2bf1
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Discovery of controllable high Chern number quantum anomalous Hall state in tetragonal lattice FeSIn

Xiao-Lang Ren(任小浪) and Chang-Wen Zhang(张昌文)†
School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan 250022, China
Abstract  Quantum anomalous Hall (QAH) insulators have excellent properties driven by fancy topological physics, but their practical application is greatly hindered by the observed temperature of liquid nitrogen, and the QAH insulator with high Chern number is conducive to spintronic devices with lower energy consumption. Here, we find that monolayer FeSIn is a good candidate for realizing the QAH phase; it exhibits a high magnetic transition temperature of 221K and tunable $C = \pm 2$ with respect to magnetization orientation in the $y$-$z$ plane. After the application of biaxial strain, the magnetic axis shifts from the $x$-$y$ plane to the $z$ direction, and the effect of the high $C $ and ferromagnetic ground state on the stress is robust. Also, the effect of correlation $U$ on $C$ has been examined. These properties are rooted in the large size of the Fe atom that contributes to ferromagnetic kinetic exchange with neighboring Fe atoms. These findings demonstrate monolayer FeSIn to be a major template for probing novel QAH devices at higher temperatures.
Keywords:  high Chern number      Weyl semimetals      quantum anomalous Hall insulator      magnetic transition temperature  
Received:  12 December 2023      Revised:  07 February 2024      Accepted manuscript online:  22 February 2024
PACS:  71.38.Mx (Bipolarons)  
  75.50.Pp (Magnetic semiconductors)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52173283), the Taishan Scholar Program of Shandong Province, China (Grant No. ts20190939), and the Independent Cultivation Program of Innovation Team of Jinan City (Grant No. 2021GXRC043).
Corresponding Authors:  Chang-Wen Zhang     E-mail:  ss_zhangchw@ujn.edu.cn

Cite this article: 

Xiao-Lang Ren(任小浪) and Chang-Wen Zhang(张昌文) Discovery of controllable high Chern number quantum anomalous Hall state in tetragonal lattice FeSIn 2024 Chin. Phys. B 33 067102

[1] Chang C Z, Liu C X and MacDonald A H 2023 Rev. Mod. Phys. 95 011002
[2] Weng H, Yu R, Hu X, Dai X and Fang Z 2015 Adv. Phys. 64 227
[3] Sun H, Li S S, Ji W X and Zhang C W 2022 Phys. Rev. B 105 195112
[4] Liu C X, Zhang S C and Qi X L 2016 Annu. Rev. Condens. Matter Phys. 7 301
[5] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[6] He K, Wang Y and Xue Q K 2018 Annu. Rev. Condens. Matter Phys. 9 329
[7] Qi X L, Hughes T L and Zhang S C 2010 Phys. Rev. B 82 184516
[8] Qi X L, Hughes T L and Zhang S C 2008 Phys. Rev. B 78 195424
[9] Xiao D, Jiang J, Shin J H, Wang W F, Zhao Y F, Liu C, Wu W, Chan M H W, Samarth N and Chang C Z 2018 Phys. Rev. Lett. 120 056801
[10] Yu R, Zhang W, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science 329 61
[11] Han Y T, Ji W X, Wang P J, Li P and Zhang C W 2023 Nanoscale 15 6830
[12] Zhang H, Xu Y, Wang J, Chang K and Zhang S C 2014 Phys. Rev. Lett. 112 216803
[13] Zhang M H, Zhang C W, Wang P J and Li S S 2018 Nanoscale 10 20226
[14] Qiao Z, Ren W, Chen H, Bellaiche L, Zhang Z, MacDonald A H and Niu Q 2014 Phys. Rev. Lett. 112 116404
[15] Niu C, Bihlmayer G, Zhang H, Wortmann D, Blügel S and Mokrousov Y 2015 Phys. Rev. B 91 041303
[16] Xu G, Wang J, Felser C, Qi X L and Zhang S C 2015 Nano Lett. 15 2019
[17] Wang Y P, Ji W X, Zhang C W, Li P, Zhang S F, Wang P J, Li S S and Yan S S 2017 Appl. Phys. Lett. 110 213101
[18] Wang Z F, Liu Z, Yang J and Liu F 2018 Phys. Rev. Lett. 120 156406
[19] Zhang S J, Zhang C W, Zhang S F, Ji W X, Li P, Wang P J, Li S S and Yan S S 2017 Phys. Rev. B 96 205433
[20] Otrokov M M, Rusinov I P, M. Rey B, Hoffmann M, Vyazovskaya A Y, Eremeev A Y, Ernst A, Echenique P M, Arnau A and Chulkov E V 2019 Phys. Rev. Lett. 122 107202
[21] Guo P J, Liu Z X and Liu Z Y 2023 npj Comput. Mater. 9 70
[22] Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
[23] Deng Y, Yu Y, Shi M Z, Wang M Z, Chen X H and Zhang Y 2020 Science 367 895
[24] Sun Q L, Ma Y D and Kioussis N 2020 Mater. Horiz. 7 2071
[25] Li Y, Li, Li Y, Ye M, Zheng F W, Zhang Z T, Fu J H, Duan W H and Xu Y 2020 Phys. Rev. Lett. 125 086401
[26] Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A F 2020 Science 367 900
[27] Xuan X Y, Zhang Z H, Chen C F and Guo W L 2022 Nano Lett. 22 5379
[28] Jiang Y D, Wang H and Wang J 2023 Phys. Rev. B 108 165122
[29] Wu X M, Li R H, Zou X R, Huang B B, Dai Y and Niu C W 2023 Phys. Rev. B 108 115438
[30] Wu B. Song Y L, Ji W X, Wang P J, Zhang S F and Zhang C W 2023 Phys. Rev. B 107 214419
[31] Zhang M H, Zhang C W, Wand P J and Li S S 2018 Nanoscale 10 20226
[32] Li S S, Ji W X, Hu S J, Zhang C W and Yan S S 2017 ACS Appl. Mater. Inter. 9 41443
[33] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[34] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[35] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[36] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[37] Guo S D, Mu W Q, Xiao X B and Liu B G 2021 Phys. Chem. Chem. Phys. 23 25994
[38] Li J Y, Yao Q S, Wu L, Hu Z X, Gao B Y, Wan X G and Liu Q H 2022 Nat. Commun. 13 919
[39] Sun Q L, Ma Y D and Kioussis N 2020 Materials Horiz. 7 2071
[40] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106
[41] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[42] Pizzi G, Vitale V, Arita R, Blugel S, Freimuth F, Geranton G, Gibertini M, Gresch D, Johnson C, Koretsune T, Ibanez-Azpiroz J, Lee H, Lihm J M, Marchand D, Marrazzo A, Mokrousov Y, Mustafa J I, Nohara Y, Nomura Y, Paulatto L, Ponce S, Ponweiser T, Qiao J F, Thole F, Tsirkin S S, Wierzbowska M, Marzari N, Vanderbilt D, Souza I, Mostofi A A and Yates J R 2020 J. Phys.: Condens. Matter 32 165902
[43] Wu Q, Zhang S, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 224 405
[44] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
[45] Zutić I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
[46] Li Z, Han Y L and Qiao Z H 2022 Phys. Rev. Lett. 129 036801
[47] Fang X T, Zhou B Z, Wang X C and Mi W B 2022 Mater. Today Phys. 28 100847
[48] Kong X R, Li L Y, Leenaerts O, Wang W Y, Liu X J and Peeters F M 2018 Nanoscale 10 8153
[1] Photoinduced Floquet higher-order Weyl semimetal in C6 symmetric Dirac semimetals
Xin-Xin Xu(许欣欣), Zi-Ming Wang(王梓名), Dong-Hui Xu(许东辉), and Chui-Zhen Chen(陈垂针). Chin. Phys. B, 2024, 33(6): 067801.
[2] Symmetry transformation of nonlinear optical current of tilted Weyl nodes and application to ferromagnetic MnBi2Te4
Zhuo-Cheng Lu(卢倬成) and Ji Feng(冯济). Chin. Phys. B, 2024, 33(4): 047303.
[3] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[4] Metal-insulator phase transition and topology in a three-component system
Shujie Cheng(成书杰) and Xianlong Gao(高先龙). Chin. Phys. B, 2021, 30(1): 010302.
[5] Anomalous Josephson current in quantum anomalous Hall insulator-based superconducting junctions with a domain wall structure
Qing Yan(闫青), Yan-Feng Zhou(周彦峰), Qing-Feng Sun(孙庆丰). Chin. Phys. B, 2020, 29(9): 097401.
[6] Effect of weak disorder in multi-Weyl semimetals
Zhen Ning(宁震), Bo Fu(付博), Qinwei Shi(石勤伟), Xiaoping Wang(王晓平). Chin. Phys. B, 2020, 29(7): 077202.
[7] Electron transport in Dirac and Weyl semimetals
Huichao Wang(王慧超), Jian Wang(王健). Chin. Phys. B, 2018, 27(10): 107402.
No Suggested Reading articles found!