Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 066802    DOI: 10.1088/1674-1056/ad334a
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Superconducting state in Ba(1-x)SrxNi2As2 near the quantum critical point

Chengfeng Yu(余承峰)1,2, Zongyuan Zhang(张宗源)1,2,†, Linxing Song(宋林兴)3,4, Yanwei Wu(吴彦玮)1,2, Xiaoqiu Yuan(袁小秋)1,2, Jie Hou(侯杰)1,2, Yubing Tu(涂玉兵)1,2, Xingyuan Hou(侯兴元)1,2, Shiliang Li(李世亮)3,4,5,‡, and Lei Shan(单磊)1,2,§
1 Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China;
2 Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China;
3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
4 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
5 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  In the phase diagram of the nickel-based superconductor Ba$_{1-x}$Sr$_{x}$Ni$_{2}$As$_{2}$, $T_{\rm c}$ has been found to be enhanced sixfold near the quantum critical point (QCP) $x = 0.71$ compared with the parent compound. However, the mechanism is still under debate. Here, we report a detailed investigation of the superconducting properties near the QCP ($x \approx 0.7$) by utilizing scanning tunneling microscopy and spectroscopy. The temperature-dependent superconducting gap and magnetic vortex state were obtained and analyzed in the framework of the Bardeen-Cooper-Schrieffer model. The ideal isotropic s-wave superconducting gap excludes the long-speculated nematic fluctuations while preferring strong electron-phonon coupling as the mechanism for $T_{\rm c}$ enhancement near the QCP. The lower than expected gap ratio of $\varDelta /(k_{\rm B}T_{\rm c})$ is rooted in the fact that Ba$_{1-x}$Sr$_{x}$Ni$_{2}$As$_{2 }$ falls into the dirty limit with a serious pair breaking effect similar to the parent compound.
Keywords:  nickel-based superconductor      electron-phonon coupling      dirty limit      scanning tunneling microscopy/spectroscopy  
Received:  10 January 2024      Revised:  18 February 2024      Accepted manuscript online:  13 March 2024
PACS:  74.25.-q (Properties of superconductors)  
  07.79.Fc (Near-field scanning optical microscopes)  
  74.55.+v (Tunneling phenomena: single particle tunneling and STM)  
  74.25.Uv (Vortex phases (includes vortex lattices, vortex liquids, and vortex glasses))  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2022YFA1403203, 2022YFA1403400, and 2021YFA1400400), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302802), the National Natural Science Foundation of China (Grant Nos. 12074002, 12104004, 12204008, and 12374133), the Chinese Academy of Sciences (Grant Nos. XDB33000000 and GJTD-2020-01), and the Major Basic Program of Natural Science Foundation of Shandong Province (Grant No. ZR2021ZD01).
Corresponding Authors:  Zongyuan Zhang, Shiliang Li, Lei Shan     E-mail:  zongyuanzhang@ahu.edu.cn;slli@iphy.ac.cn;lshan@ahu.edu.cn

Cite this article: 

Chengfeng Yu(余承峰), Zongyuan Zhang(张宗源), Linxing Song(宋林兴), Yanwei Wu(吴彦玮), Xiaoqiu Yuan(袁小秋), Jie Hou(侯杰), Yubing Tu(涂玉兵), Xingyuan Hou(侯兴元), Shiliang Li(李世亮), and Lei Shan(单磊) Superconducting state in Ba(1-x)SrxNi2As2 near the quantum critical point 2024 Chin. Phys. B 33 066802

[1] Cao Y, Rodan-Legrain D, Park J M, Yuan N F, Watanabe K, Taniguchi T, Fernandes R M, Fu L and Jarillo-Herrero P 2021 Science 372 264
[2] Davis J S and Lee D H 2013 Proc. Natl. Acad. Sci. USA 110 17623
[3] Fradkin E, Kivelson S A and Tranquada J M 2015 Rev. Mod. Phys. 87 457
[4] Kothapalli K, Ronning F, Bauer E, Schultz A and Nakotte H 2010 J. Phys. Conf. Ser. 251 012010
[5] Frachet M, Wiecki P, Lacmann T, Souliou S, Willa K, Meingast C, Merz M, Haghighirad A A, Le Tacon M and Böhmer A 2022 npj Quantum Mater. 7 115
[6] Eckberg C C D J, Metz T, Collini J, Hodovanets H, Drye T, Zavalij P, Christensen M H, Fernandes R M, Lee S, Abbamonte P, Jeffrey W L and Paglione J 2020 Nat. Phys. 16 346
[7] Lee S, Collini J, Sun S X L, Mitrano M, Guo X, Eckberg C, Paglione J, Fradkin E and Abbamonte P 2021 Phys. Rev. Lett. 127 027602
[8] Sefat A S, McGuire M A, Jin R, Sales B C, Mandrus D, Ronning F, Bauer E and Mozharivskyj Y 2009 Phys. Rev. B 79 094508
[9] Li L, Luo Y, Wang Q, Chen H, Ren Z, Tao Q, Li Y, Lin X, He M and Zhu Z 2009 New J. Phys. 11 025008
[10] Johrendt D and Pöttgen R 2009 Physica C 469 332
[11] Lee S, De La Penã G, Sun S X L, Mitrano M, Fang Y, Jang H, Lee J S, Eckberg C, Campbell D and Collini J 2019 Phys. Rev. Lett. 122 147601
[12] Kudo K, Takasuga M, Okamoto Y, Hiroi Z and Nohara M 2012 Phys. Rev. Lett. 109 097002
[13] Pavlov N S, Kim T K, Yaresko A, Choi K Y, Nekrasov I A and Evtushinsky D V 2021 J. Phys. Chem. C 125 28075
[14] Kurita N, Ronning F, Tokiwa Y, Bauer E D, Subedi A, Singh D J, Thompson J and Movshovich R 2009 Phys. Rev. Lett. 102 147004
[15] Subedi A and Singh D J 2008 Phys. Rev. B 78 132511
[16] Lederer S, Schattner Y, Berg E and Kivelson S A 2015 Phys. Rev. Lett. 114 097001
[17] Lederer S, Berg E and Kim E A 2020 Phys. Rev. Res. 2 023122
[18] Song L, Si J, Fennell T, Stuhr U, Deng G, Wang J, Liu J, Hao L, Luo H, Liu M and Li S 2024 Phys. Rev. B 109 104518
[19] Qin T, Zhong R, Cao W, Shen S, Wen C, Qi Y and Yan S 2023 Nano Lett. 23 2958
[20] Ronning F, Kurita N, Bauer E, Scott B, Park T, Klimczuk T, Movshovich R and Thompson J D 2008 J. Phys.: Condens. Matter 20 342203
[21] Chen Z, Xu G, Hu W, Zhang X, Zheng P, Chen G, Luo J, Fang Z and Wang N 2009 Phys. Rev. B 80 094506
[22] Liang Z W, Hou X Y, Zhang F, Ma W R, Wu P, Zhang Z Y, Yu F H, Ying J J, Jiang K, Shan L, Wang Z Y and Chen X H 2021 Phys. Rev. X 11 031026
[23] Li A, Yin J X, Wang J, Wu Z, Ma J, Sefat A S, Sales B C, Mandrus D G, McGuire M A and Jin R 2019 Phys. Rev. B 99 134520
[24] Dynes R, Garno J, Hertel G and Orlando T 1984 Phys. Rev. Lett. 53 2437
[25] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175
[26] Eliashberg G 1960 Sov. Phys. JETP 11 696
[27] Schrieffer J, Scalapino D J and Wilkins J 1963 Phys. Rev. Lett. 10 336
[28] McMillan W and Rowell J 1965 Phys. Rev. Lett. 14 108
[29] Shan L, Gong J, Wang Y L, Shen B, Hou X Y, Ren C, Li C H, Yang H, Wen H H, Li S L and Dai P 2012 Phys. Rev. Lett. 108 227002
[30] Moore S A F J, Iavarone M 2015 Supercon. Sci. Technol. 28 045003
[31] Hess H, Robinson R and Waszczak J 1990 Phys. Rev. Lett. 64 2711
[32] Caroli C, De Gennes P and Matricon J 1964 Phys. Lett. 9 307
[33] Renner C, Kent A, Niedermann P, Fischer Ø and Lévy F 1991 Phys. Rev. Lett. 67 1650
[34] Lechner E M, Oli B D, Makita J, Ciovati G, Gurevich A and Iavarone M 2020 Phys. Rev. Appl. 13 044044
[35] Fang D, Yang H and Wen H H 2023 Sci. Sin. Phys. Mech. Astron. 53 127404
[36] Kogan V and Zhelezina N 2005 Phys. Rev. B 71 134505
[37] Narayan D M, Hao P, Kurleto R, Berggren B S, Linn A G, Eckberg C, Saraf P, Collini J, Zavalij P and Hashimoto M 2023 Sci. Adv. 9 eadi4966
[38] Dagan Y, Beck R and Greene R L 2007 Phys. Rev. Lett. 99 147004
[1] Microscopic growth mechanism and edge states of monolayer 1T'-MoTe2
Haipeng Zhao(赵海鹏), Yin Liu(刘隐), Shengguo Yang(杨胜国), Chenfang Lin(林陈昉), Mingxing Chen(陈明星), Kai Braun, Xinyi Luo(罗心仪), Siyu Li(李思宇), Anlian Pan(潘安练), and Xiao Wang(王笑). Chin. Phys. B, 2024, 33(4): 046801.
[2] Gate-controlled localization to delocalization transition of flat band wavefunction in twisted monolayer-bilayer graphene
Siyu Li(李思宇), Zhengwen Wang(王政文), Yucheng Xue(薛禹承), Lu Cao(曹路), Kenji Watanabe, Takashi Taniguchi, Hongjun Gao(高鸿钧), and Jinhai Mao(毛金海). Chin. Phys. B, 2023, 32(6): 067304.
[3] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[4] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[5] Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5
Bin Hu(胡彬), Yuhan Ye(耶郁晗), Zihao Huang(黄子豪), Xianghe Han(韩相和), Zhen Zhao(赵振),Haitao Yang(杨海涛), Hui Chen(陈辉), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(5): 058102.
[6] Signatures of strong interlayer coupling in γ-InSe revealed by local differential conductivity
Xiaoshuai Fu(富晓帅), Li Liu(刘丽), Li Zhang(张力), Qilong Wu(吴奇龙), Yu Xia(夏雨), Lijie Zhang(张利杰), Yuan Tian(田园), Long-Jing Yin(殷隆晶), and Zhihui Qin(秦志辉). Chin. Phys. B, 2021, 30(8): 087306.
[7] Effects of layer stacking and strain on electronic transport in two-dimensional tin monoxide
Yanfeng Ge(盖彦峰), Yong Liu(刘永). Chin. Phys. B, 2019, 28(7): 077104.
[8] Detailed electronic structure of three-dimensional Fermi surface and its sensitivity to charge density wave transition in ZrTe3 revealed by high resolution laser-based angle-resolved photoemission spectroscopy
Shou-Peng Lyu(吕守鹏), Li Yu(俞理), Jian-Wei Huang(黄建伟), Cheng-Tian Lin(林成天), Qiang Gao(高强), Jing Liu(刘静), Guo-Dong Liu(刘国东), Lin Zhao(赵林), Jie Yuan(袁洁), Chuang-Tian Chen(陈创天), Zu-Yan Xu(许祖彦), Xing-Jiang Zhou(周兴江). Chin. Phys. B, 2018, 27(8): 087503.
[9] The superconducting properties of a Pb/MoTe2/Pb heterostructure:First-principles calculations within the anisotropic Migdal-Eliashberg theory
Wei Xia(夏威), Jie Zhang(张洁), Gui-Qin Huang(黄桂芹). Chin. Phys. B, 2018, 27(12): 126302.
[10] Superconductivity of bilayer phosphorene under interlayer compression
Gui-Qin Huang(黄桂芹) and Zhong-Wen Xing(邢钟文). Chin. Phys. B, 2016, 25(2): 027402.
[11] Electron-phonon coupling in cuprate and iron-based superconductors revealed by Raman scattering
Zhang An-Min (张安民), Zhang Qing-Ming (张清明). Chin. Phys. B, 2013, 22(8): 087103.
[12] Renormalization of the chemical potential due to multiphonon effects at the surface of metals
Ma Lei (马磊), Kang Guang-Zhen (康广振), Li Jun (李俊). Chin. Phys. B, 2012, 21(10): 107301.
No Suggested Reading articles found!