|
|
CeAu2In4: A candidate of quasi-one-dimensional antiferromagnetic Kondo lattice |
Meng Lyu(吕孟)1,2, Hengcan Zhao(赵恒灿)1, Jiahao Zhang(张佳浩)1,2, Zhen Wang(王振)1,2, Shuai Zhang(张帅)1,2, and Peijie Sun(孙培杰)1,2,3,† |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract Needle-like single crystals of CeAu2In4 have been grown from In flux and characterized as a new candidate of quasi-one-dimensional Kondo lattice compound by crystallographic, magnetic, transport, and specific-heat measurements down to very low temperatures. We observe an antiferromagnetic transition at TN ≈ 0.9 K, a highly non-mean-field profile of the corresponding peak in specific heat, and a large Sommerfeld coefficient γ =369 mJ·mol-1·K-2. The Kondo temperature TK is estimated to be 1.1 K, being low and comparable to TN. While Fermi liquid behavior is observed deep into the magnetically ordered phase, the Kadowaki-Woods ratio is much reduced relative to the expected value for Ce compounds with Kramers doublet ground state. Markedly, this feature shares striking similarities to that of the prototypical quasi-one-dimensional compounds YbNi4P2 and CeRh6Ge4 with tunable ferromagnetic quantum critical point. Given the shortest Ce-Ce distance along the needle direction, CeAu2In4 appears to be an interesting model system for exploring antiferromagnetic quantum critical behaviors in a quasi-one-dimensional Kondo lattice with enhanced quantum fluctuations.
|
Received: 28 April 2021
Revised: 07 June 2021
Accepted manuscript online: 11 June 2021
|
PACS:
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
71.20.Eh
|
(Rare earth metals and alloys)
|
|
72.15.-v
|
(Electronic conduction in metals and alloys)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774404 and 52088101), the National Key R&D Program of China (Grant No. 2017YF A0303100), and the Chinese Academy of Sciences through the Strategic Priority Research Program (Grant No. XDB33000000). |
Corresponding Authors:
Peijie Sun
E-mail: pjsun@iphy.ac.cn
|
Cite this article:
Meng Lyu(吕孟), Hengcan Zhao(赵恒灿), Jiahao Zhang(张佳浩), Zhen Wang(王振), Shuai Zhang(张帅), and Peijie Sun(孙培杰) CeAu2In4: A candidate of quasi-one-dimensional antiferromagnetic Kondo lattice 2021 Chin. Phys. B 30 087101
|
[1] Shimozawa M, Goh S K, Shibauchi T and Matsuda Y 2016 Rep. Prog. Phys. 79 074503 [2] Shishido H, Shibauchi T, Yasu K, Kato T, Kontani H, Terashima T and Matsuda Y 2010 Science 327 980 [3] Doniach S 1977 Physica B+C 91 231 [4] Custers J, Gegenwart P, Wilhelm H, Neumaier K, Tokiwa Y, Trovarelli O, Geibel C, Steglich F, Pépin C and Coleman P 2003 Nature 424 524 [5] Izawa K, Yamaguchi H, Matsuda Y, Shishido H, Settai R and Onuki Y 2001 Phys. Rev. Lett. 87 057002 [6] Steppke A, Kuchler R, Lausberg S, Lengyel E, Steinke L, Borth R, Luhmann T, Krellner C, Nicklas, Geibel M C, Steglich F and Brando M 2013 Science 339 933 [7] Shen B, Zhang Y, Komijani Y, Nicklas M, Borth R, Wang A, Chen Y, Nie Z, Li R, Lu X, Lee H, Smidman M, Steglich F, Coleman P and Yuan H 2020 Nature 579 51 [8] Wang L, Fu Z, Sun J, Liu M, Yi W, Yi C, Luo Y, Dai Y, Liu G, Matsushita Y, Yamaura K, Lu L, Cheng J G, Yang Y F, Shi Y and Luo J 2017 npj Quantum Materials 2 36 [9] Salvador J R, Hoang K, Mahanti S D and Kanatzidis M G 2007 Inorg. Chem. 46 6933 [10] Sebastian C P, Salvador J, Martin J B and Kanatzidis M G 2010 Inorg. Chem. 49 10468 [11] Joshi D A, Manfrinetti P, Dhar S K and Thamizhavel A 2010 J. Phys.: Conf. Ser. 200 012074 [12] Paschen S and Si Q 2020 Nat. Rev. Phys. 3 9 [13] Pfau H, Daou R, Friedemann S, Karbassi S, Ghannadzadeh S, Küchler R, Hamann S, Steppke A, Sun D, König M, Mackenzie A P, Kliemt K, Krellner C and Brando M 2017 Phys. Rev. Lett. 119 126402 [14] Buschow K H J, de Wijn H W and van Diepen A M 1969 J. Chem. Phys. 50 137 [15] Zhao H, Zhang J, Hu S, Isikawa Y, Luo J, Steglich F and Sun P 2016 Phys. Rev. B 94 235131 [16] Busch G and Vogt O 1967 Phys. Lett. A 25 449 [17] Bartholin H, Florence D, Wang T and Vogt O 1974 Phys. Stat. Sol. 24 631 [18] Heer H, Furrert A, Halgt W and Vogt O 1979 J. Phys. C: Solid State Phys. 12 5207 [19] Fritsch V, Huang C L, Bagrets N, Grube K, Schumann S and Löhneysen H v 2013 Physica Status Solidi (b) 250 506 [20] Desgranges H U and Schotte K D 1982 Phys. Lett. A 91 240 [21] Yashima H 1982 Solid State Commun. 43 193 [22] Kadowaki K and Woods S 1986 Solid State Commun. 58 507 [23] Tsujii N, Kontani H and Yoshimura K 2005 Phys. Rev. Lett. 94 057201 [24] Huesges Z, Kliemt K, Krellner C, Sarkar R, Klauß H H, Geibel C, Rotter M, Novák P, Kuneš J and Stockert O 2018 New J. Phys. 20 073021 [25] Voßwinkel D, Niehaus O, Rodewald U C and Pöttgen R 2012 Zeitschrift für Naturforschung B 67 1241 [26] Shu J W, Adroja D T, Hillier A D, Zhang Y J, Chen Y X, Shen B, Orlandi F, Walker H C, Liu Y, Cao C, Steglich F, Yuan H Q and Smidman M 2021 arXiv:2102.12788 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|