Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 077508    DOI: 10.1088/1674-1056/ab9617

Degenerate antiferromagnetic states in spinel oxide LiV2O4

Ben-Chao Gong(龚本超)1, Huan-Cheng Yang(杨焕成)2,1, Kui Jin(金魁)3,4, Kai Liu(刘凯)1, Zhong-Yi Lu(卢仲毅)1
1 Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China;
2 Beijing Computational Science Research Center, Beijing 100193, China;
3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
4 Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
Abstract  The magnetic and electronic properties of spinel oxide LiV2O4 have been systematically studied by using the spin-polarized first-principles electronic structure calculations. We find that a series of magnetic states, in which the ferromagnetic (FM) V4 tetrahedra are linked together through the corner-sharing antiferromagnetic (AFM) V4 tetrahedra, possess degenerate energies lower than those of other spin configurations. The large number of these energetically degenerated states being the magnetic ground state give rise to strong magnetic frustration as well as large magnetic entropy in LiV2O4. The corresponding band structure and density of states of such a typical magnetic state in this series, i.e., the ditetrahedron (DT) AFM state, demonstrate that LiV2O4 is in the vicinity of a metal-insulator transition. Further analysis suggests that the t2g and eg orbitals of the V atoms play different roles in the magnetic exchange interactions. Our calculations are consistent with previous experimental measurements and shed light on understanding the exotic magnetism and the heavy-fermion behavior of LiV2O4.
Keywords:  spinel oxide      magnetic properties      heavy fermion      first-principles calculations  
Received:  05 March 2020      Revised:  18 May 2020      Accepted manuscript online: 
PACS:  75.47.Lx (Magnetic oxides)  
  75.30.Mb (Valence fluctuation, Kondo lattice, and heavy-fermion phenomena)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFA0302903 and 2019YFA0308603), the National Natural Science Foundation of China (Grant Nos. 11774422, 11774424, and 11674374), the CAS Interdisciplinary Innovation Team, the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 19XNLG13).
Corresponding Authors:  Kai Liu, Zhong-Yi Lu     E-mail:;

Cite this article: 

Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅) Degenerate antiferromagnetic states in spinel oxide LiV2O4 2020 Chin. Phys. B 29 077508

[1] Hill R J, Craig J R and Gibbs G V 1979 Phys. Chem. Minerals 4 317
[2] Johnston D C, Prakash H, Zachariasen W H and Viswanathan R 1973 Mater. Res. Bull. 8 777
[3] Moshopoulou E G 1999 J. Am. Ceram. Soc. 82 3317
[4] Jin K, He G, Zhang X, Maruyama S, Yasui S, Suchoski R, Shin J, Jiang Y, Yu H S, Yuan J, Shan L, Kusmartsev V F, Greene R L and Takeuchi I 2015 Nat. Commun. 6 7183
[5] He G, Jia Y, Hou X, Wei Z, Xie H, Yang Z, Shi J, Yuan J, Shan L, Zhu B, Li H, Gu L, Liu K, Xiang T and Jin K 2017 Phys. Rev. B 95 054510
[6] Strobel P, Cras F L, Seguin L, Anne M and Tarascon J M 1998 J. Soild State Chem. 135 132
[7] Oohara Y, Sugiyama J and Kontani M 1999 J. Phys. Soc. Jpn. 68 242
[8] Maitra T and Valentí R 2007 Phys. Rev. Lett. 99 126401
[9] Fritsch V, Hemberger J, Büttgen N, Scheidt E W, Krug von Nidda H A, Loidl A and Tsurkan V 2004 Phys. Rev. Lett. 92 116401
[10] Zhao K H, Wang Y H, Shi X L, Liu N and Zhang L W 2015 Chin. Phys. Lett. 32 087503
[11] Kondo S, Johnston D C, Swenson C A, Borsa F, Mahajan A V, Miller L L, Gu T, Goldman A I, Maple M B, Gajewski D A, Freeman E J, Dilley N R, Dickey R P, Merrin J, Kojima K, Luke G M, Uemura Y J, Chmaissem O and Jorgensen J D 1997 Phys. Rev. Lett. 78 3729
[12] Auerbach A and Levin K 1986 Phys. Rev. Lett. 57 877
[13] Nekrasov I A, Pchelkina Z V, Keller G, Pruschke T, Held K, Krimmel A, Vollhardt D and Anisimov V I 2003 Phys. Rev. B 67 085111
[14] Anisimov V I, Korotin M A, Zölfl M, Pruschke T, Hur K L and Rice T M 1999 Phys. Rev. Lett. 83 364
[15] Singh D J, Blaha P, Schwarz K and Mazin I I 1999 Phys. Rev. B 60 16359
[16] Arita R, Held K, Lukoyanov A V and Anisimov V I 2007 Phys. Rev. Lett. 98 166402
[17] Tomiyasu K, Iwasa K, Ueda H, Niitaka S, Takagi H, Ohira-Kawamura S, Kikuchi T, Inamura Y, Nakajima K and Yamada K 2014 Phys. Rev. Lett. 113 236402
[18] Hattori K and Tsunetsugu H 2009 Phys. Rev. B 79 035115
[19] Yamashita Y and Ueda K 2003 Phys. Rev. B 67 195107
[20] Koda A, Kadono R, Higemoto W, Ohishi K, Ueda H, Urano C, Kondo S, Nohara M and Takagi H 2004 Phys. Rev. B 69 012402
[21] Ueda Y, Fujiwara N and Yasuoka H 1997 J. Phys. Soc. Jpn. 66 778
[22] Kondo S, Johnston D C and Miller L L 1998 Phys. Rev. B 59 2609
[23] Lee S H, Qiu Y, Broholm C, Ueda Y and Rush J J 2001 Phys. Rev. Lett. 86 5554
[24] Shimizu Y, Takeda H, Tanaka M, Itoh M, Niitaka S and Takagi H 2012 Nat. Commun. 3 981
[25] Burdin S, Grempel D R and Georges A 2002 Phys. Rev. B 66 045111
[26] Lacroix C 2001 Can. J. Phys. 79 1469
[27] Uehara A, Shinaoka H and Motome Y 2015 Phys. Rev. B 92 195150
[28] Fujimoto S 2002 Phys. Rev. B 65 155108
[29] Matsuno J, Fujimori A and Mattheiss L F 1999 Phys. Rev. B 60 1607
[30] Eyert V, Höck K H, Horn S, Loidl A and Riseborough P S 1999 Europhys. Lett. 46 762
[31] Zhang Y H, Meng J and Taft C A 2009 Mol. Phys. 107 1445
[32] Rogers D B, Gillson J L and Gier T E 1967 Solid State Commun. 5 263
[33] Faran O and Volterra V 1997 Solid State Commun. 101 861
[34] Chmaissem O, Jorgensen J D, Kondo S and Johnston D C 1997 Phys. Rev. Lett. 79 4866
[35] Mahajan A V, Sala R, Lee E, Borsa F, Kondo S and Johnston D C 1998 Phys. Rev. B 57 8890
[36] Takeda H, Kato Y, Yoshimura M, Shimizu Y, Itoh M, Niitaka S and Takagi H 2015 Phys. Rev. B 92 045103
[37] Krimmel A, Loidl A, Klemm M, Horn S and Schober H 1999 Phys. Rev. Lett. 82 2919
[38] Fujiwara N, Yasuoka H and Ueda Y 1998 Phys. Rev. B 57 3539
[39] Urano C, Nohara M, Kondo S, Sakai F, Takagi H, Shiraki T and Okubo T 2000 Phys. Rev. Lett. 85 1052
[40] Jönsson P E, Takenaka K, Niitaka S, Sasagawa T, Sugai S and Takagi H 2007 Phys. Rev. Lett. 99 167402
[41] Shimoyamada A, Tsuda S, Ishizaka K, Kiss T, Shimojima T, Togashi T, Watanabe S, Zhang C Q, Chen C T, Matsushita Y, Ueda H, Ueda Y and Shin S 2006 Phys. Rev. Lett. 96 026403
[42] Irizawa A, Shimai K, Nanba T, Niitaka S and Takagi H 2010 J. Phys.: Conf. Ser. 200 012068
[43] Chamberland B L and Hewston T A 1986 Solid State Commun. 58 693
[44] Das S, Zong X, Niazi A, Ellern A, Yan J Q and Johnston D C 2007 Phys. Rev. B 76 054418
[45] Johnston D C 2000 Physica B 281&282 21
[46] Takagi H, Urano C, Kondo S, Nohara M, Ueda Y, Shiraki T and Okubo T 1999 Mater. Sci. Eng. B 63 147
[47] Okabe H, Hiraishi M, Koda A, Kojima K M, Takeshita S, Yamauchi I, Matsushita Y, Kuramoto Y and Kadono R 2019 Phys. Rev. B 99 041113(R)
[48] Blöchl P E 1994 Phys. Rev. B 50 17953
[49] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[50] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[51] Kresse G and Hafner J 1994 J. Phys.: Condens. Matter 6 8245
[52] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[53] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[54] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[55] Blöchl P E, Jepsen O and Andersen O K 1994 Phys. Rev. B 49 16223
[56] Becke A D and Johnson E R 2006 J. Chem. Phys. 124 221101
[57] Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
[58] Perdew J P, Ruzsinszky A, Tao J M, Staroverov V N, Scuseria G E and Csonka G I 2005 J. Chem. Phys. 123 062201
[59] Liu K, Lu Z Y and Xiang T 2016 Phys. Rev. B 93 205154
[60] Yang H C, Gong B C, Liu K and Lu Z Y 2018 J. Phys.: Condens. Matter 31 025803
[1] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[2] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[3] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[9] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[10] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[11] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[12] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[13] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[14] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[15] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
No Suggested Reading articles found!