Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 057502    DOI: 10.1088/1674-1056/ad1a94
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetic and magnetocaloric effect of Er$_{\bf 20}$Ho$_{\bf 20}$Dy$_{\bf 20}$Cu$_{\bf 20}$Ni$_{\bf 20}$ high-entropy metallic glass

Shi-Lin Yu1,†, Lu Tian2,3, Jun-Feng Wang2,‡, Xin-Guo Zhao1, Da Li1, Zhao-Jun Mo2, and Bing Li1
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China and School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China;
2 Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China;
3 School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
Abstract  Er$_{20}$Ho$_{20}$Dy$_{20}$Cu$_{20}$Ni$_{20}$ high-entropy metallic glass exhibited excellent magnetic refrigeration material with a wide temperature range and high refrigeration capacity (RC) was reported. Er$_{20}$Ho$_{20}$Dy$_{20}$Cu$_{20}$Ni$_{20}$ high-entropy metallic glass was observed with typical spin glass behavior around 15.5 K. In addition, we find that the magnetic entropy change ($-\Delta S_{\rm M}$) originates from the sample undergoing a ferromagnetic (FM) to paramagnetic (PM) transition around 20 K. Under a field change from 0 T to 7 T, the value of maximum magnetic entropy change ($-\Delta S_{\rm M}^{\max}$) reaches 12.5 J/kg$\cdot$K, and the corresponding value of RC reaches 487.7 J/kg in the temperature range from 6 K to 60 K. The large RC and wide temperature range make the Er$_{20}$Ho$_{20}$Dy$_{20}$Cu$_{20}$Ni$_{20}$ high-entropy metallic glass be a promising material for application in magnetic refrigerators.
Keywords:  magnetic materials      magnetocaloric effect      high-entropy metallic glass      magnetic refrigeration      large refrigeration capacity  
Received:  22 November 2023      Revised:  28 December 2023      Accepted manuscript online: 
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.47.Np (Metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52371203 and 52271192) and the Ministry of Science and Technology of China (Grant No. 2021YFB3501201).
Corresponding Authors:  Shi-Lin Yu,E-mail:slyu@imr.ac.cn;Jun-Feng Wang,E-mail:jfwang@gia.cas.cn     E-mail:  slyu@imr.ac.cn;jfwang@gia.cas.cn

Cite this article: 

Shi-Lin Yu, Lu Tian, Jun-Feng Wang, Xin-Guo Zhao, Da Li, Zhao-Jun Mo, and Bing Li Magnetic and magnetocaloric effect of Er$_{\bf 20}$Ho$_{\bf 20}$Dy$_{\bf 20}$Cu$_{\bf 20}$Ni$_{\bf 20}$ high-entropy metallic glass 2024 Chin. Phys. B 33 057502

[1] Li L W and Yan M 2023 J. Mater. Sci. Technol. 136 1
[2] Zhang Y K, Tian Y, Zhang Z Q, Jia Y S, Zhang B, Jiang M Q, Wang J and Ren Z M 2022 Acta Mater. 226 117669
[3] Yang S X, Zheng X Q, Wang D S, Xu J P, Yin W, Xi L, Liu C F, Liu J, Xu J W, Zhang H, Xu Z Y, Wang L C, Yao Y H, Zhang M S, Zhang Y C, Shen J X, Wang S G and Shen B G 2023 J. Mater. Sci. Technol. 146 168
[4] Ma Z P, Xu P, Ying J Y, Zhang Y K and Li L W 2023 Acta Mater. 247 118757
[5] Mo Z J, Gong J J, Xie H C, Zhang L, Fu Q, Gao X Q, Li Z X and Shen J 2023 Chin. Phys. B 32 027503
[6] Zhang Y, Shi G Y, Wang L C, Zheng X Q, Liu J, Jin Y X, Zhang K W, Liu H X, Zong S T and Sun Z G 2022 Chin. Phys. B 31 077501
[7] Zhang Y K, Hao W X, Hu C L, Wang X, Zhang X F and Li L W 2023 Adv. Funct. Mater. 33 2310047
[8] Zhang Y K, Xu P, Zhu J, Yan S M, Zhang J C and Li L W 2023 Mater. Today Phys. 32 101031
[9] Doring A M, Rosa M A, Hemkemaier M C, Wendhausen P A P, Lozano J A, Barbosa J R and Teixeira C D 2022 J. Alloys Compd. 902 163688
[10] Zhong X C, Dong X T, Huang J H, Liu C L, Zhang H, Huang Y L, Yu H Y and Ramanujan R V 2022 Metals 121 112
[11] Law J Y, Diaz-Garcia A, Moreno-Ramirez L M and Franco V 2021 Acta Mater. 212 116931
[12] Li L W, Oliver N, Marcel K and Rainer P 2014 Appl. Phys. Lett. 104 092416
[13] Tarhan C and Cil M A 2021 J. Energy. Storage 40 102676
[14] Mo Z J, Shen J, Yan L Q, Tang C C, Lin J, Wu J F, Sun J R, Wang L C, Zheng X Q and Shen B G 2013 Appl. Phys. Lett. 103 052409
[15] Feng J Q, Liu Y H, Sui J H, He A N, Xia W X, Wang W H, Wang J Q and Huo J T 2021 Mater. Today. Phys. 21 100528
[16] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H and Chang S Y 2004 Adv. Eng. Mater. 6 299
[17] Singh S, Wanderka N, Murty S, Glatzel U and Banhart J 2010 Acta Mater. 59 182
[18] He J Y, Zhu C, Zhuo D Q, Liu W H, Nieh T G and Lu Z P 2014 Intermetallics 55 9
[19] Zhang Y, Zou T T, Tang Z, Michael G, Karin A D, Peter K L and Lu Z P 2014 Prog. Mater. Sci. 61 1
[20] Zhao S F, Shao Y, Liu X, Chen N, Ding H Y and Yao K F 2015 Mater. Des. 87 625
[21] Tian L, Xu B, Chen H, Mo Z J, Li Z X, Liu G D and Shen J 2023 Sci. China Mater. 66 3984
[22] Luo Q A, Schwarz B, Mattern N and Eckert J 2010 Phys. Rev. B 82 024204
[23] Smaili A and Chahine R 1997 J. Appl. Phys. 81 824
[24] Vuarnoz D and Kawanami T 2012 Appl. Therm. Eng. 37 388
[25] Li J, Xue L, Yang W M, Yuan C C, Huo J T and Shen B L 2018 Intermetallics 96 90
[26] Huo J T, Huo L S, Li J W, Men H, Wang X M, Inoue A, Chang C T, Wang J Q and Li R W 2015 J. Appl. Phys 117 073902
[27] Zhang Y K, Wu B B, Guo D, Wang J and Ren Z M 2021 Chin. Phys. B 30 017501
[28] Zhang Y K, Guo D, Li H D, Geng S H, Wang J, Li X, Xu H, Ren Z M and Wilde G 2018 J. Alloys Compd. 733 40
[29] Yuan F, Du J and Shen B L 2012 Appl. Phys. Lett. 101 032405
[30] Fan J F, Ling L S, Hong B, Zhang L, Pi L and Zhang Y H 2010 Phys. Rev. B 81 144426
[31] Luo Q, Zhao D Q, Pan M X and Wang W H 2007 Appl. Phys. Lett. 90 211903
[32] Li L W, Yuan Y, Qi Y, Wang Q and Zhou S Q 2018 Mater. Res. Lett. 6 67
[33] Dong Z Q, Wang Z J and Yin S H 2020 Intermetallics 124 106879
[34] Liang L, Hui X, Zhang C M and Chen G L 2008 J. Alloys Compd. 463 30
[1] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[2] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[3] Structure, magnetism and magnetocaloric effects in Er5Si3Bx (x=0.3, 0.6) compounds
Zhihong Hao(郝志红), Hui Liu(刘辉), and Juguo Zhang(张聚国). Chin. Phys. B, 2023, 32(11): 117501.
[4] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[5] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[6] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[7] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[8] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[9] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[10] Formation of L10-FeNi hard magnetic material from FeNi-based amorphous alloys
Yaocen Wang(汪姚岑), Ziyan Hao(郝梓焱), Yan Zhang(张岩), Xiaoyu Liang(梁晓宇), Xiaojun Bai(白晓军), and Chongde Cao(曹崇德). Chin. Phys. B, 2022, 31(4): 046301.
[11] Comprehensive performance of a ball-milled La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al magnetocaloric composite
Jiao-Hong Huang(黄焦宏), Ying-De Zhang(张英德), Nai-Kun Sun(孙乃坤), Yang Zhang(张扬), Xin-Guo Zhao(赵新国), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2022, 31(4): 047503.
[12] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[13] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[14] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[15] Oxygen vacancy control of electrical, optical, and magnetic properties of Fe0.05Ti0.95O2 epitaxial films
Qing-Tao Xia(夏清涛), Zhao-Hui Li(李召辉), Le-Qing Zhang(张乐清), Feng-Ling Zhang(张凤玲), Xiang-Kun Li(李祥琨), Heng-Jun Liu(刘恒均), Fang-Chao Gu(顾方超), Tao Zhang(张涛), Qiang Li(李强), and Qing-Hao Li(李庆浩). Chin. Phys. B, 2021, 30(11): 117701.
No Suggested Reading articles found!