Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 128506    DOI: 10.1088/1674-1056/acb916
Special Issue: SPECIAL TOPIC — Physics in micro-LED and quantum dots devices
TOPICAL REVIEW—Physics in micro-LED and quantum dots devices Prev   Next  

Materials and device engineering to achieve high-performance quantum dots light emitting diodes for display applications

Changfeng Han(韩长峰)1,2,3, Ruoxi Qian(钱若曦)4, Chaoyu Xiang(向超宇)1,2,3,†, and Lei Qian(钱磊)5,‡
1 Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo 315300, China;
2 Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
3 Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
4 Jiangsu JITRI Molecular Engineering Inst. Co., Ltd., Changshu 215500, China;
5 Shenzhen Research Institute Beijing Institute of Technology, Shenzhen 518057, China
Abstract  Quantum dots (QDs) have attracted wide attention from academia and industry because of their advantages such as high emitting efficiency, narrow half-peak width, and continuously adjustable emitting wavelength. QDs light emitting diodes (QLEDs) are expected to become the next generation commercial display technology. This paper reviews the progress of QLED from physical mechanism, materials, to device engineering. The strategies to improve QLED performance from the perspectives of quantum dot materials and device structures are summarized.
Keywords:  quantum dots      light emitting diodes      device engineering  
Received:  04 November 2022      Revised:  10 January 2023      Accepted manuscript online:  06 February 2023
PACS:  85.35.-p (Nanoelectronic devices)  
  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  
Fund: Project supported by Leading innovation and entrepreneurship team of Zhejiang Province of China (Grant No.2021R01003), Science and Technology Innovation 2025 Major Project of Ningbo (Grant No.2022Z085), Ningbo 3315 Programme (Grant No.2020A-01-B), YONGJIANG Talent Introduction Programme (Grant No.2021A-038-B), and Zhujiang Talent Programme (Grant No.2016LJ06C621).
Corresponding Authors:  Chaoyu Xiang, Lei Qian     E-mail:  xiangchaoyu@nimte.ac.cn;qian_lei@126.com

Cite this article: 

Changfeng Han(韩长峰), Ruoxi Qian(钱若曦), Chaoyu Xiang(向超宇), and Lei Qian(钱磊) Materials and device engineering to achieve high-performance quantum dots light emitting diodes for display applications 2023 Chin. Phys. B 32 128506

[1] Brus L 1986 J. Phys. Chem. 90 6
[2] Brus L E 1984 J. Chem. Phys. 80 7
[3] Wang X, Yan X, Li W and Sun K 2012 Adv. Mater. 24 2742
[4] Yin L, Bai Y, Zhou J, Cao J, Sun X and Zhang J 2015 Opt. Mater. 42 187
[5] Yin M, Pan T, Yu Z, Peng X, Zhang X, Xie W, Liu S and Zhang L 2018 Org. Electron. 62 407
[6] Lim J, Jun S, Jang E, Baik H, Kim H and Cho J 2007 Adv. Mater. 19 1927
[7] Scholes M A H G D 2003 Adv. Mater. 15 6
[8] Peng X 2010 Nano Res. 2 425
[9] Smah P G 1998 J. Phys. Chem. B 102 3
[10] Hines M A G S 1998 J. Phys. Chem. B 102 3655
[11] Rossetti R, Nakahara S and Brus L E 1983 J. Chem. Phys. 79 1086
[12] Murray C B, Norris D J and Bawendi M G 1993 J. Am. Chem. Soc. 115 8706
[13] Colvin V L, Schlamp M C and Alivisatos A P 1994 Nature 370 354
[14] Yuan Q, Wang T, Yu P, Zhang H, Zhang H and Ji W 2021 Org. Electron. 90 106086
[15] Song J, Wang O, Shen H, Lin Q, Li Z, Wang L, Zhang X and Li L S 2019 Adv. Func. Mater. 29 1808377
[16] Wu Q, Gong X, Zhao D, Zhao Y B, Cao F, Wang H, Wang S, Zhang J, Quintero-Bermudez R, Sargent E H and Yang X 2022 Adv. Mater. 34 e2108150
[17] Deng Y Z, Peng F, Lu Y, Zhu X T, Jin W X, Qiu J, Dong J W, Hao Y L, Di D W, Gao Y, Sun T L, Zhang M, Liu F, Wang L J, Ying L, Huang F and Jin Y Z 2022 Nat. Photonics 16 505
[18] Zhitomirsky D, Kramer I J, Labelle A J, Fischer A, Debnath R, Pan J, Bakr O M and Sargent E H 2012 Nano Lett. 12 1007
[19] Kumari K, Kumar U, Sharma S N, Chand S, Kakkar R, Vankar V D and Kumar V 2008 J. Phys. D Appl. Phys. 41 235409
[20] Sayevich V, Guhrenz C, Sin M, Dzhagan V M, Weiz A, Kasemann D, Brunner E, Ruck M, Zahn D R T, Leo K, Gaponik N and Eychmüller A 2016 Adv. Func. Mater. 26 2163
[21] Krieg F, Ochsenbein S T, Yakunin S, Ten Brinck S, Aellen P, Suess A, Clerc B, Guggisberg D, Nazarenko O, Shynkarenko Y, Kumar S, Shih C J, Infante I and Kovalenko M V 2018 ACS Energy Lett. 3 641
[22] Pan J, Shang Y, Yin J, De Bastiani M, Peng W, Dursun I, Sinatra L, El-Zohry A M, Hedhili M N, Emwas A H, Mohammed O F, Ning Z and Bakr O M 2018 J. Am. Chem. Soc. 140 562
[23] Dai X, Deng Y, Peng X and Jin Y 2017 Adv. Mater. 29 1607022
[24] Dai X, Deng Y, Peng X and Jin Y 2017 Adv. Mater. 29 1607022
[25] Shirasaki Y, Supran G J, Bawendi M G and Bulović V 2012 Nat. Photonics 7 13
[26] Liang X, Bai S, Wang X, Dai X, Gao F, Sun B, Ning Z, Ye Z and Jin Y 2017 Chem. Soc. Rev. 46 1730
[27] Jiang C, Liu H, Liu B, Zhong Z, Zou J, Wang J, Wang L, Peng J and Cao Y 2016 Org. Electron. 31 82
[28] Liu Y, Jiang C, Song C, Wang J, Mu L, He Z, Zhong Z, Cun Y, Mai C, Wang J, Peng J and Cao Y 2018 ACS Nano 12 1564
[29] Ho M D, Kim D, Kim N, Cho S M and Chae H 2013 ACS Appl. Mater. Interfaces 5 12369
[30] Liu Y, Lan L, Liu B, Tao H, Li M, Xu H, Zou J, Xu M, Wang L, Peng J and Cao Y 2020 Org. Electron. 80 105618
[31] Dai X, Zhang Z, Jin Y, Niu Y, Cao H, Liang X, Chen L, Wang J and Peng X 2014 Nature 515 96
[32] Panzer M J, Aidala K E, Anikeeva P O, Halpert J E, Bawendi M G and Bulovic V 2010 Nano Lett. 10 2421
[33] Chang T W F, Musikhin S, Bakueva L, Levina L, Hines M A, Cyr P W and Sargent E H 2004 Appl. Phys. Lett. 84 4295
[34] Wu Q, Cao F, Kong L and Yang X 2019 Chin. Phys. B 28 118103
[35] Shen H B, Gao Q, Zhang Y B, Lin Y, Lin Q L, Li Z H, Chen L, Zeng Z P, Li X G, Jia Y, Wang S J, Du Z L, Li L S and Zhang Z Y 2019 Nat. Photonics 13 192
[36] Kong L, Wu J, Li Y, Cao F, Wang F, Wu Q, Shen P, Zhang C, Luo Y, Wang L, Turyanska L, Ding X, Zhang J, Zhao Y and Yang X 2022 Sci. Bull. 67 529
[37] Lee K H J L 2011 Electron. Mater. Lett. 7 15
[38] Yang X, Dev K, Wang J, Mutlugun E, Dang C, Zhao Y, Liu S, Tang Y, Tan S T, Sun X W and Demir H V 2014 Adv. Func. Mater. 24 5977
[39] Jia H, Wang F and Tan Z 2020 Nanoscale 12 13186
[40] Peng Z A P X 2001 J. Am. Chem. Soc. 123 2
[41] Wang A, Shen H B, Zang S P, Lin Q L, Wang H Z, Qian L, Niu J Z and Li L S 2015 Nanoscale 7 2951
[42] Mashford B S, Stevenson M, Popovic Z, Hamilton C, Zhou Z Q, Breen C, Steckel J, Bulovic V, Bawendi M, Coe-Sullivan S and Kazlas P T 2013 Nat. Photonics 7 407
[43] Panfil Y O M and Banin U 2018 Angew. Chem. Int. Ed. Engl. 57 4274
[44] Selopal G S, Zhao H, Wang Z M and Rosei F 2020 Adv. Func. Mater. 30 1908762
[45] Banin T M U 2003 Chem. Mater. 15 6
[46] Lim S J, Chon B, Joo T and Shin S K 2008 J. Phys. Chem. C 112 1744
[47] Reiss P, Proti'ere M and Li L 2009 Small 5 154
[48] Shariati M R, Samadi-Maybodi A and Colagar A H 2018 J. Mater. Chem. A 6 20433
[49] Kim S, Park J, Kim T, Jang E, Jun S, Jang H, Kim B and Kim S W 2011 Small 7 70
[50] Pan Z X, Zhang H, Cheng K, Hou Y M, Hua J L and Zhong X H 2012 ACS Nano 6 3982
[51] Kim S, Fisher B, Eisler H J and Bawendi M 2003 J. Am. Chem. Soc. 125 11466
[52] Jones M, Kumar S, Lo S S and Scholes G D 2008 J. Phys. Chem. C 112 5423
[53] Piryatinski A, Ivanov S A, Tretiak S and Klimov V I 2007 Nano Lett. 7 108
[54] Zhu H, Song N, Rodriguez-Cordoba W and Lian T 2012 J. Am. Chem. Soc. 134 4250
[55] Wu K, Liang G, Kong D, Chen J, Chen Z, Shan X, McBride J R and Lian T 2016 Chem. Sci. 7 1238
[56] Wang L, Nonaka K, Okuhata T, Katayama T and Tamai N 2018 J. Phys. Chem. C 122 12038
[57] Galland C, Ghosh Y, Steinbruck A, Sykora M, Hollingsworth J A, Klimov V I and Htoon H 2011 Nature 479 203
[58] Chen D, Zhao F, Qi H, Rutherford M and Peng X 2010 Chem. Mater. 22 1437
[59] Gomez D E, van Embden J, Mulvaney P, Fernee M J and Rubinsztein-Dunlop H 2009 ACS Nano 3 2281
[60] Cragg G E and Efros A L 2010 Nano Lett. 10 313
[61] Kovalenko M V, Bodnarchuk M I, Zaumseil J, Lee J S and Talapin D V 2010 J. Am. Chem. Soc. 132 10085
[62] Panfil Y E, Oded M and Banin U 2018 Angew. Chem. Int. Ed. Engl. 57 4274
[63] Zhong X H, Han M Y, Dong Z L, White T J and Knoll W 2003 J. Am. Chem. Soc. 125 8589
[64] Lee K H, Lee J H, Kang H D, Han C Y, Bae S M, Lee Y, Hwang J Y and Yang H 2014 J. Alloys Compd. 610 511
[65] Bae W K, Nam M K, Char K and Lee S 2008 Chem. Mater. 20 5307
[66] Yang Y, Zheng Y, Cao W, Titov A, Hyvonen J, Manders J R, Xue J, Holloway P H and Qian L 2015 Nat. Photonics 9 259
[67] Jun S and Jang E 2013 Angew. Chem. Int. Ed. Engl. 52 679
[68] Todescato F, Minotto A, Signorini R, Jasieniak J J and Bozio R 2013 ACS Nano 7 6649
[69] Lee K H, Lee J H, Kang H D, Park B, Kwon Y, Ko H, Lee C, Lee J and Yang H 2014 ACS Nano 8 4893
[70] Shen H, Wang H, Li X, Niu J Z, Wang H, Chen X and Li L S 2009 Dalton Trans. 47 10534
[71] Dong B, Cao L, Su G and Liu W 2010 Chem. Commun. 46 7331
[72] Li H B, Brescia R, Krahne R, Bertoni G, Alcocer M J P, D'Andrea C, Scotognella F, Tassone F, Zanella M, De Giorgi M and Manna L 2012 ACS Nano 6 1637
[73] Talapin D V, Lee J S, Kovalenko M V and Shevchenko E V 2010 Chem. Rev. 110 389
[74] Shen H, Cao W, Shewmon N T, Yang C, Li L S and Xue J 2015 Nano Lett. 15 1211
[75] Li Z, Hu Y, Shen H, Lin Q, Wang L, Wang H, Zhao W and Li Lin S 2017 Laser Photonics Rev. 11 1600227
[76] Chen O, Zhao J, Chauhan V P, Cui J, Wong C, Harris D K, Wei H, Han H S, Fukumura D, Jain R K and Bawendi M G 2013 Nat. Mater. 12 445
[77] Li X, Zhao Y B, Fan F, Levina L, Liu M, Quintero-Bermudez R, Gong X, Quan L N, Fan J, Yang Z, Hoogland S, Voznyy O, Lu Z H and Sargent E H 2018 Nat. Photonics 12 159
[78] Brown P R, Kim D, Lunt R R, Zhao N, Bawendi M G, Grossman J C and Bulovic V 2014 ACS Nano 8 5863
[79] Liu J, Yang W, Li Y, Fan L and Li Y 2014 Phys. Chem. Chem. Phys. : PCCP 16 4778
[80] Kulkarni A P, Tonzola C J, Babel A and Jenekhe S A 2004 Chem. Mater. 16 4556
[81] Lim J, Bae W K, Kwak J, Lee S, Lee C and Char K 2012 Opt. Mater. Express 2 594
[82] Shirasaki Y, Supran G J, Bawendi M G and Bulovic V 2013 Nat. Photonics 7 13
[83] Tengstedt C, Osikowicz W, Salaneck W R, Parker I D, Hsu C H and Fahlman M 2006 Appl. Phys. Lett. 88 053502
[84] Braun S, Salaneck W R and Fahlman M 2009 Adv. Mater. 21 1450
[85] Zhou M, Png R Q, Sivaramakrishnan S, Chia P J, Yong C K, Chua L L and Ho P K H 2010 Appl. Phys. Lett. 97 113505
[86] Zhou M, Chua L L, Png R Q, Yong C K, Sivaramakrishnan S, Chia P J, Wee A T, Friend R H and Ho P K 2009 Phys. Rev. Lett. 103 036601
[87] Zhou M, Chua L L, Png R Q, Yong C K, Sivaramakrishnan S, Chia P J, Wee A T, Friend R H and Ho P K 2009 Phys. Rev. Lett. 103 036601
[88] Wang F Z, Tan Z A and Li Y F 2015 Energy Environ. Sci. 8 1059
[89] Tao C, Ruan S P, Zhang X D, Xie G H, Shen L, Kong X Z, Dong W, Liu C X and Chen W Y 2008 Appl. Phys. Lett. 93
[90] Ratcliff E L, Meyer J, Steirer K X, Garcia A, Berry J J, Ginley D S, Olson D C, Kahn A and Armstrong N R 2011 Chem. Mater. 23 4988
[91] Chan I M, Hsu T Y and Hong F C 2002 Appl. Phys. Lett. 81 1899
[92] Liang X Y, Yi Q, Bai S, Dai X L, Wang X, Ye Z Z, Gao F, Zhang F L, Sun B Q and Jin Y Z 2014 Nano Lett. 14 3117
[93] Yang X Y, Mutlugun E, Zhao Y B, Gao Y, Leck K S, Ma Y Y, Ke L, Tan S T, Demir H V and Sun X W 2014 Small 10 247
[94] Cao F, Wu Q, Sui Y, Wang S, Dou Y, Hua W, Kong L, Wang L, Zhang J, Jiang T and Yang X 2021 Small 17 e2100030
[95] Yang Z, Wu Q, Lin G, Zhou X, Wu W, Yang X, Zhang J and Li W 2019 Mater. Horiz. 6 2009
[96] Shin J S, Kim M, Ma J H, Jeong J H, Hwang H W, Kim J W and Kang S J 2022 J. Mater. Chem. C 10 5590
[97] Yang X, Mutlugun E, Zhao Y, Gao Y, Leck K S, Ma Y, Ke L, Tan S T, Demir H V and Sun X W 2014 Small 10 247
[98] Zhao L, Zhang Z, Luo X, Liu Z and Zhang Y 2021 Thin Solid Films 730 138722
[99] Coe S, Woo W K, Bawendi M and Bulovic V 2002 Nature 420 800
[100] Zhao J L, Bardecker J A, Munro A M, Liu M S, Niu Y H, Ding I K, Luo J D, Chen B Q, Jen A K Y and Ginger D S 2006 Nano Lett. 6 463
[101] Niu Y H, Munro A M, Cheng Y J, Tian Y Q, Liu M S, Zhao J L, Bardecker J A, Jen-La Plante I, Ginger D S and Jen A K Y 2007 Adv. Mater. 19 3371
[102] Sun Q, Wang Y A, Li L S, Wang D Y, Zhu T, Xu J, Yang C H and Li Y F 2007 Nat. Photonics 1 717
[103] Han Y J, An K, Kang K T, Ju B K and Cho K H 2019 Sci. Rep. 9 10385
[104] Redecker M, Bradley D D C, Inbasekaran M, Wu W W and Woo E P 1999 Adv. Mater. 11 241
[105] Shi Y L, Liang F, Hu Y, Wang X D, Wang Z K and Liao L S 2017 J. Mater. Chem. C 5 5372
[106] Yim K H, Whiting G L, Murphy C E, Halls J J M, Burroughes J H, Friend R H and Kim J S 2008 Adv. Mater. 20 3319
[107] Small C E, Tsang S W, Kido J, So S K and So F 2012 Adv. Func. Mater. 22 3261
[108] Tang P, Xie L, Xiong X, Wei C, Zhao W, Chen M, Zhuang J, Su W and Cui Z 2020 ACS Appl. Mater. Interfaces 12 13087
[109] Bai L, Yang X, Ang C Y, Nguyen K T, Ding T, Bose P, Gao Q, Mandal A K, Sun X W, Demir H V and Zhao Y 2015 Nanoscale 7 11531
[110] Wu Q, Cao F, Wang H, Kou J, Zhang Z H and Yang X 2020 Adv. Sci. 7 2001760
[111] Bhaumik S and Pal A J 2014 ACS Appl. Mater. Interfaces 6 11348
[112] Sun Q J, Subramanyam G, Dai L M, Check M, Campbell A, Naik R, Grote J and Wang Y Q 2009 ACS Nano 3 737
[113] Anikeeva P O, Halpert J E, Bawendi M G and Bulovic V 2009 Nano Lett. 9 2532
[114] Caruge J M, Halpert J E, Wood V, Bulovic V and Bawendi M G 2008 Nat. Photonics 2 247
[115] Qian L, Zheng Y, Xue J and Holloway P H 2011 Nat. Photonics 5 543
[116] Zhang H, Sui N, Chi X C, Wang Y H, Liu Q H, Zhang H Z and Ji W Y 2016 ACS Appl. Mater. Interfaces 8 31385
[117] Ding K, Chen H T, Fan L W, Wang B, Huang Z, Zhuang S Q, Hu B and Wang L 2017 ACS Appl. Mater. Interfaces 9 20231
[118] Sun Y Z, Jiang Y B, Peng H R, Wei J L, Zhang S D and Chen S M 2017 Nanoscale 9 8962
[119] Pan J Y, Chen J, Huang Q Q, Khan Q, Liu X, Tao Z, Zhang Z C, Lei W and Nathan A 2016 ACS Photonics 3 215
[120] Kim H M, Geng D, Kim J, Hwang E and Jang J 2016 ACS Appl. Mater. Interfaces 8 28727
[121] Pan J Y, Wei C T, Wang L X, Zhuang J Y, Huang Q Q, Su W M, Cui Z, Nathan A, Lei W and Chen J 2018 Nanoscale 10 592
[1] High-temperature continuous-wave operation of 1310 nm InAs/GaAs quantum dot lasers
Xiang-Bin Su(苏向斌), Fu-Hui Shao(邵福会), Hui-Ming Hao(郝慧明), Han-Qing Liu(刘汗青),Shu-Lun Li(李叔伦), De-Yan Dai(戴德炎), Xiang-Jun Shang(尚向军), Tian-Fang Wang(王天放),Yu Zhang(张宇), Cheng-Ao Yang(杨成奥), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥),Ying Ding(丁颖), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(9): 098103.
[2] Chiral current regulation and detection of Berry phase in triangular triple quantum dots
Yue Qi(齐月), Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), and Zhen-Gang Zhu(朱振刚). Chin. Phys. B, 2023, 32(8): 087304.
[3] Delayed response to the photovoltaic performance in a double quantum dots photocell with spatially correlated fluctuation
Sheng-Nan Zhu(祝胜男), Shun-Cai Zhao(赵顺才), Lu-Xin Xu(许路昕), and Lin-Jie Chen(陈林杰). Chin. Phys. B, 2023, 32(5): 057302.
[4] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[5] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[6] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[7] Real-time dynamics in strongly correlated quantum-dot systems
Yong-Xi Cheng(程永喜), Zhen-Hua Li(李振华), Jian-Hua Wei(魏建华), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2023, 32(12): 127302.
[8] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[9] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[10] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[11] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[12] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[13] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[14] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
[15] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
No Suggested Reading articles found!