Special Issue:
SPECIAL TOPIC — Physics in micro-LED and quantum dots devices
|
TOPICAL REVIEW—Physics in micro-LED and quantum dots devices |
Prev
Next
|
|
|
Materials and device engineering to achieve high-performance quantum dots light emitting diodes for display applications |
Changfeng Han(韩长峰)1,2,3, Ruoxi Qian(钱若曦)4, Chaoyu Xiang(向超宇)1,2,3,†, and Lei Qian(钱磊)5,‡ |
1 Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo 315300, China; 2 Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; 3 Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China; 4 Jiangsu JITRI Molecular Engineering Inst. Co., Ltd., Changshu 215500, China; 5 Shenzhen Research Institute Beijing Institute of Technology, Shenzhen 518057, China |
|
|
Abstract Quantum dots (QDs) have attracted wide attention from academia and industry because of their advantages such as high emitting efficiency, narrow half-peak width, and continuously adjustable emitting wavelength. QDs light emitting diodes (QLEDs) are expected to become the next generation commercial display technology. This paper reviews the progress of QLED from physical mechanism, materials, to device engineering. The strategies to improve QLED performance from the perspectives of quantum dot materials and device structures are summarized.
|
Received: 04 November 2022
Revised: 10 January 2023
Accepted manuscript online: 06 February 2023
|
PACS:
|
85.35.-p
|
(Nanoelectronic devices)
|
|
61.46.Df
|
(Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))
|
|
Fund: Project supported by Leading innovation and entrepreneurship team of Zhejiang Province of China (Grant No.2021R01003), Science and Technology Innovation 2025 Major Project of Ningbo (Grant No.2022Z085), Ningbo 3315 Programme (Grant No.2020A-01-B), YONGJIANG Talent Introduction Programme (Grant No.2021A-038-B), and Zhujiang Talent Programme (Grant No.2016LJ06C621). |
Corresponding Authors:
Chaoyu Xiang, Lei Qian
E-mail: xiangchaoyu@nimte.ac.cn;qian_lei@126.com
|
Cite this article:
Changfeng Han(韩长峰), Ruoxi Qian(钱若曦), Chaoyu Xiang(向超宇), and Lei Qian(钱磊) Materials and device engineering to achieve high-performance quantum dots light emitting diodes for display applications 2023 Chin. Phys. B 32 128506
|
[1] Brus L 1986 J. Phys. Chem. 90 6 [2] Brus L E 1984 J. Chem. Phys. 80 7 [3] Wang X, Yan X, Li W and Sun K 2012 Adv. Mater. 24 2742 [4] Yin L, Bai Y, Zhou J, Cao J, Sun X and Zhang J 2015 Opt. Mater. 42 187 [5] Yin M, Pan T, Yu Z, Peng X, Zhang X, Xie W, Liu S and Zhang L 2018 Org. Electron. 62 407 [6] Lim J, Jun S, Jang E, Baik H, Kim H and Cho J 2007 Adv. Mater. 19 1927 [7] Scholes M A H G D 2003 Adv. Mater. 15 6 [8] Peng X 2010 Nano Res. 2 425 [9] Smah P G 1998 J. Phys. Chem. B 102 3 [10] Hines M A G S 1998 J. Phys. Chem. B 102 3655 [11] Rossetti R, Nakahara S and Brus L E 1983 J. Chem. Phys. 79 1086 [12] Murray C B, Norris D J and Bawendi M G 1993 J. Am. Chem. Soc. 115 8706 [13] Colvin V L, Schlamp M C and Alivisatos A P 1994 Nature 370 354 [14] Yuan Q, Wang T, Yu P, Zhang H, Zhang H and Ji W 2021 Org. Electron. 90 106086 [15] Song J, Wang O, Shen H, Lin Q, Li Z, Wang L, Zhang X and Li L S 2019 Adv. Func. Mater. 29 1808377 [16] Wu Q, Gong X, Zhao D, Zhao Y B, Cao F, Wang H, Wang S, Zhang J, Quintero-Bermudez R, Sargent E H and Yang X 2022 Adv. Mater. 34 e2108150 [17] Deng Y Z, Peng F, Lu Y, Zhu X T, Jin W X, Qiu J, Dong J W, Hao Y L, Di D W, Gao Y, Sun T L, Zhang M, Liu F, Wang L J, Ying L, Huang F and Jin Y Z 2022 Nat. Photonics 16 505 [18] Zhitomirsky D, Kramer I J, Labelle A J, Fischer A, Debnath R, Pan J, Bakr O M and Sargent E H 2012 Nano Lett. 12 1007 [19] Kumari K, Kumar U, Sharma S N, Chand S, Kakkar R, Vankar V D and Kumar V 2008 J. Phys. D Appl. Phys. 41 235409 [20] Sayevich V, Guhrenz C, Sin M, Dzhagan V M, Weiz A, Kasemann D, Brunner E, Ruck M, Zahn D R T, Leo K, Gaponik N and Eychmüller A 2016 Adv. Func. Mater. 26 2163 [21] Krieg F, Ochsenbein S T, Yakunin S, Ten Brinck S, Aellen P, Suess A, Clerc B, Guggisberg D, Nazarenko O, Shynkarenko Y, Kumar S, Shih C J, Infante I and Kovalenko M V 2018 ACS Energy Lett. 3 641 [22] Pan J, Shang Y, Yin J, De Bastiani M, Peng W, Dursun I, Sinatra L, El-Zohry A M, Hedhili M N, Emwas A H, Mohammed O F, Ning Z and Bakr O M 2018 J. Am. Chem. Soc. 140 562 [23] Dai X, Deng Y, Peng X and Jin Y 2017 Adv. Mater. 29 1607022 [24] Dai X, Deng Y, Peng X and Jin Y 2017 Adv. Mater. 29 1607022 [25] Shirasaki Y, Supran G J, Bawendi M G and Bulović V 2012 Nat. Photonics 7 13 [26] Liang X, Bai S, Wang X, Dai X, Gao F, Sun B, Ning Z, Ye Z and Jin Y 2017 Chem. Soc. Rev. 46 1730 [27] Jiang C, Liu H, Liu B, Zhong Z, Zou J, Wang J, Wang L, Peng J and Cao Y 2016 Org. Electron. 31 82 [28] Liu Y, Jiang C, Song C, Wang J, Mu L, He Z, Zhong Z, Cun Y, Mai C, Wang J, Peng J and Cao Y 2018 ACS Nano 12 1564 [29] Ho M D, Kim D, Kim N, Cho S M and Chae H 2013 ACS Appl. Mater. Interfaces 5 12369 [30] Liu Y, Lan L, Liu B, Tao H, Li M, Xu H, Zou J, Xu M, Wang L, Peng J and Cao Y 2020 Org. Electron. 80 105618 [31] Dai X, Zhang Z, Jin Y, Niu Y, Cao H, Liang X, Chen L, Wang J and Peng X 2014 Nature 515 96 [32] Panzer M J, Aidala K E, Anikeeva P O, Halpert J E, Bawendi M G and Bulovic V 2010 Nano Lett. 10 2421 [33] Chang T W F, Musikhin S, Bakueva L, Levina L, Hines M A, Cyr P W and Sargent E H 2004 Appl. Phys. Lett. 84 4295 [34] Wu Q, Cao F, Kong L and Yang X 2019 Chin. Phys. B 28 118103 [35] Shen H B, Gao Q, Zhang Y B, Lin Y, Lin Q L, Li Z H, Chen L, Zeng Z P, Li X G, Jia Y, Wang S J, Du Z L, Li L S and Zhang Z Y 2019 Nat. Photonics 13 192 [36] Kong L, Wu J, Li Y, Cao F, Wang F, Wu Q, Shen P, Zhang C, Luo Y, Wang L, Turyanska L, Ding X, Zhang J, Zhao Y and Yang X 2022 Sci. Bull. 67 529 [37] Lee K H J L 2011 Electron. Mater. Lett. 7 15 [38] Yang X, Dev K, Wang J, Mutlugun E, Dang C, Zhao Y, Liu S, Tang Y, Tan S T, Sun X W and Demir H V 2014 Adv. Func. Mater. 24 5977 [39] Jia H, Wang F and Tan Z 2020 Nanoscale 12 13186 [40] Peng Z A P X 2001 J. Am. Chem. Soc. 123 2 [41] Wang A, Shen H B, Zang S P, Lin Q L, Wang H Z, Qian L, Niu J Z and Li L S 2015 Nanoscale 7 2951 [42] Mashford B S, Stevenson M, Popovic Z, Hamilton C, Zhou Z Q, Breen C, Steckel J, Bulovic V, Bawendi M, Coe-Sullivan S and Kazlas P T 2013 Nat. Photonics 7 407 [43] Panfil Y O M and Banin U 2018 Angew. Chem. Int. Ed. Engl. 57 4274 [44] Selopal G S, Zhao H, Wang Z M and Rosei F 2020 Adv. Func. Mater. 30 1908762 [45] Banin T M U 2003 Chem. Mater. 15 6 [46] Lim S J, Chon B, Joo T and Shin S K 2008 J. Phys. Chem. C 112 1744 [47] Reiss P, Proti'ere M and Li L 2009 Small 5 154 [48] Shariati M R, Samadi-Maybodi A and Colagar A H 2018 J. Mater. Chem. A 6 20433 [49] Kim S, Park J, Kim T, Jang E, Jun S, Jang H, Kim B and Kim S W 2011 Small 7 70 [50] Pan Z X, Zhang H, Cheng K, Hou Y M, Hua J L and Zhong X H 2012 ACS Nano 6 3982 [51] Kim S, Fisher B, Eisler H J and Bawendi M 2003 J. Am. Chem. Soc. 125 11466 [52] Jones M, Kumar S, Lo S S and Scholes G D 2008 J. Phys. Chem. C 112 5423 [53] Piryatinski A, Ivanov S A, Tretiak S and Klimov V I 2007 Nano Lett. 7 108 [54] Zhu H, Song N, Rodriguez-Cordoba W and Lian T 2012 J. Am. Chem. Soc. 134 4250 [55] Wu K, Liang G, Kong D, Chen J, Chen Z, Shan X, McBride J R and Lian T 2016 Chem. Sci. 7 1238 [56] Wang L, Nonaka K, Okuhata T, Katayama T and Tamai N 2018 J. Phys. Chem. C 122 12038 [57] Galland C, Ghosh Y, Steinbruck A, Sykora M, Hollingsworth J A, Klimov V I and Htoon H 2011 Nature 479 203 [58] Chen D, Zhao F, Qi H, Rutherford M and Peng X 2010 Chem. Mater. 22 1437 [59] Gomez D E, van Embden J, Mulvaney P, Fernee M J and Rubinsztein-Dunlop H 2009 ACS Nano 3 2281 [60] Cragg G E and Efros A L 2010 Nano Lett. 10 313 [61] Kovalenko M V, Bodnarchuk M I, Zaumseil J, Lee J S and Talapin D V 2010 J. Am. Chem. Soc. 132 10085 [62] Panfil Y E, Oded M and Banin U 2018 Angew. Chem. Int. Ed. Engl. 57 4274 [63] Zhong X H, Han M Y, Dong Z L, White T J and Knoll W 2003 J. Am. Chem. Soc. 125 8589 [64] Lee K H, Lee J H, Kang H D, Han C Y, Bae S M, Lee Y, Hwang J Y and Yang H 2014 J. Alloys Compd. 610 511 [65] Bae W K, Nam M K, Char K and Lee S 2008 Chem. Mater. 20 5307 [66] Yang Y, Zheng Y, Cao W, Titov A, Hyvonen J, Manders J R, Xue J, Holloway P H and Qian L 2015 Nat. Photonics 9 259 [67] Jun S and Jang E 2013 Angew. Chem. Int. Ed. Engl. 52 679 [68] Todescato F, Minotto A, Signorini R, Jasieniak J J and Bozio R 2013 ACS Nano 7 6649 [69] Lee K H, Lee J H, Kang H D, Park B, Kwon Y, Ko H, Lee C, Lee J and Yang H 2014 ACS Nano 8 4893 [70] Shen H, Wang H, Li X, Niu J Z, Wang H, Chen X and Li L S 2009 Dalton Trans. 47 10534 [71] Dong B, Cao L, Su G and Liu W 2010 Chem. Commun. 46 7331 [72] Li H B, Brescia R, Krahne R, Bertoni G, Alcocer M J P, D'Andrea C, Scotognella F, Tassone F, Zanella M, De Giorgi M and Manna L 2012 ACS Nano 6 1637 [73] Talapin D V, Lee J S, Kovalenko M V and Shevchenko E V 2010 Chem. Rev. 110 389 [74] Shen H, Cao W, Shewmon N T, Yang C, Li L S and Xue J 2015 Nano Lett. 15 1211 [75] Li Z, Hu Y, Shen H, Lin Q, Wang L, Wang H, Zhao W and Li Lin S 2017 Laser Photonics Rev. 11 1600227 [76] Chen O, Zhao J, Chauhan V P, Cui J, Wong C, Harris D K, Wei H, Han H S, Fukumura D, Jain R K and Bawendi M G 2013 Nat. Mater. 12 445 [77] Li X, Zhao Y B, Fan F, Levina L, Liu M, Quintero-Bermudez R, Gong X, Quan L N, Fan J, Yang Z, Hoogland S, Voznyy O, Lu Z H and Sargent E H 2018 Nat. Photonics 12 159 [78] Brown P R, Kim D, Lunt R R, Zhao N, Bawendi M G, Grossman J C and Bulovic V 2014 ACS Nano 8 5863 [79] Liu J, Yang W, Li Y, Fan L and Li Y 2014 Phys. Chem. Chem. Phys. : PCCP 16 4778 [80] Kulkarni A P, Tonzola C J, Babel A and Jenekhe S A 2004 Chem. Mater. 16 4556 [81] Lim J, Bae W K, Kwak J, Lee S, Lee C and Char K 2012 Opt. Mater. Express 2 594 [82] Shirasaki Y, Supran G J, Bawendi M G and Bulovic V 2013 Nat. Photonics 7 13 [83] Tengstedt C, Osikowicz W, Salaneck W R, Parker I D, Hsu C H and Fahlman M 2006 Appl. Phys. Lett. 88 053502 [84] Braun S, Salaneck W R and Fahlman M 2009 Adv. Mater. 21 1450 [85] Zhou M, Png R Q, Sivaramakrishnan S, Chia P J, Yong C K, Chua L L and Ho P K H 2010 Appl. Phys. Lett. 97 113505 [86] Zhou M, Chua L L, Png R Q, Yong C K, Sivaramakrishnan S, Chia P J, Wee A T, Friend R H and Ho P K 2009 Phys. Rev. Lett. 103 036601 [87] Zhou M, Chua L L, Png R Q, Yong C K, Sivaramakrishnan S, Chia P J, Wee A T, Friend R H and Ho P K 2009 Phys. Rev. Lett. 103 036601 [88] Wang F Z, Tan Z A and Li Y F 2015 Energy Environ. Sci. 8 1059 [89] Tao C, Ruan S P, Zhang X D, Xie G H, Shen L, Kong X Z, Dong W, Liu C X and Chen W Y 2008 Appl. Phys. Lett. 93 [90] Ratcliff E L, Meyer J, Steirer K X, Garcia A, Berry J J, Ginley D S, Olson D C, Kahn A and Armstrong N R 2011 Chem. Mater. 23 4988 [91] Chan I M, Hsu T Y and Hong F C 2002 Appl. Phys. Lett. 81 1899 [92] Liang X Y, Yi Q, Bai S, Dai X L, Wang X, Ye Z Z, Gao F, Zhang F L, Sun B Q and Jin Y Z 2014 Nano Lett. 14 3117 [93] Yang X Y, Mutlugun E, Zhao Y B, Gao Y, Leck K S, Ma Y Y, Ke L, Tan S T, Demir H V and Sun X W 2014 Small 10 247 [94] Cao F, Wu Q, Sui Y, Wang S, Dou Y, Hua W, Kong L, Wang L, Zhang J, Jiang T and Yang X 2021 Small 17 e2100030 [95] Yang Z, Wu Q, Lin G, Zhou X, Wu W, Yang X, Zhang J and Li W 2019 Mater. Horiz. 6 2009 [96] Shin J S, Kim M, Ma J H, Jeong J H, Hwang H W, Kim J W and Kang S J 2022 J. Mater. Chem. C 10 5590 [97] Yang X, Mutlugun E, Zhao Y, Gao Y, Leck K S, Ma Y, Ke L, Tan S T, Demir H V and Sun X W 2014 Small 10 247 [98] Zhao L, Zhang Z, Luo X, Liu Z and Zhang Y 2021 Thin Solid Films 730 138722 [99] Coe S, Woo W K, Bawendi M and Bulovic V 2002 Nature 420 800 [100] Zhao J L, Bardecker J A, Munro A M, Liu M S, Niu Y H, Ding I K, Luo J D, Chen B Q, Jen A K Y and Ginger D S 2006 Nano Lett. 6 463 [101] Niu Y H, Munro A M, Cheng Y J, Tian Y Q, Liu M S, Zhao J L, Bardecker J A, Jen-La Plante I, Ginger D S and Jen A K Y 2007 Adv. Mater. 19 3371 [102] Sun Q, Wang Y A, Li L S, Wang D Y, Zhu T, Xu J, Yang C H and Li Y F 2007 Nat. Photonics 1 717 [103] Han Y J, An K, Kang K T, Ju B K and Cho K H 2019 Sci. Rep. 9 10385 [104] Redecker M, Bradley D D C, Inbasekaran M, Wu W W and Woo E P 1999 Adv. Mater. 11 241 [105] Shi Y L, Liang F, Hu Y, Wang X D, Wang Z K and Liao L S 2017 J. Mater. Chem. C 5 5372 [106] Yim K H, Whiting G L, Murphy C E, Halls J J M, Burroughes J H, Friend R H and Kim J S 2008 Adv. Mater. 20 3319 [107] Small C E, Tsang S W, Kido J, So S K and So F 2012 Adv. Func. Mater. 22 3261 [108] Tang P, Xie L, Xiong X, Wei C, Zhao W, Chen M, Zhuang J, Su W and Cui Z 2020 ACS Appl. Mater. Interfaces 12 13087 [109] Bai L, Yang X, Ang C Y, Nguyen K T, Ding T, Bose P, Gao Q, Mandal A K, Sun X W, Demir H V and Zhao Y 2015 Nanoscale 7 11531 [110] Wu Q, Cao F, Wang H, Kou J, Zhang Z H and Yang X 2020 Adv. Sci. 7 2001760 [111] Bhaumik S and Pal A J 2014 ACS Appl. Mater. Interfaces 6 11348 [112] Sun Q J, Subramanyam G, Dai L M, Check M, Campbell A, Naik R, Grote J and Wang Y Q 2009 ACS Nano 3 737 [113] Anikeeva P O, Halpert J E, Bawendi M G and Bulovic V 2009 Nano Lett. 9 2532 [114] Caruge J M, Halpert J E, Wood V, Bulovic V and Bawendi M G 2008 Nat. Photonics 2 247 [115] Qian L, Zheng Y, Xue J and Holloway P H 2011 Nat. Photonics 5 543 [116] Zhang H, Sui N, Chi X C, Wang Y H, Liu Q H, Zhang H Z and Ji W Y 2016 ACS Appl. Mater. Interfaces 8 31385 [117] Ding K, Chen H T, Fan L W, Wang B, Huang Z, Zhuang S Q, Hu B and Wang L 2017 ACS Appl. Mater. Interfaces 9 20231 [118] Sun Y Z, Jiang Y B, Peng H R, Wei J L, Zhang S D and Chen S M 2017 Nanoscale 9 8962 [119] Pan J Y, Chen J, Huang Q Q, Khan Q, Liu X, Tao Z, Zhang Z C, Lei W and Nathan A 2016 ACS Photonics 3 215 [120] Kim H M, Geng D, Kim J, Hwang E and Jang J 2016 ACS Appl. Mater. Interfaces 8 28727 [121] Pan J Y, Wei C T, Wang L X, Zhuang J Y, Huang Q Q, Su W M, Cui Z, Nathan A, Lei W and Chen J 2018 Nanoscale 10 592 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|