Special Issue:
SPECIAL TOPIC—Post-Moore era: Materials and device physics
|
SPECIAL TOPIC—Post-Moore era: Materials and device physics |
Prev
Next
|
|
|
β-Ga2O3 junction barrier Schottky diode with NiO p-well floating field rings |
Qiming He(何启鸣)1,2, Weibing Hao(郝伟兵)2, Qiuyan Li(李秋艳)2, Zhao Han(韩照)2, Song He(贺松)2, Qi Liu(刘琦)2, Xuanze Zhou(周选择)2, Guangwei Xu(徐光伟)2, and Shibing Long(龙世兵)2,† |
1 School of Electronic and Information Engineering, Beihang University, Beijing 100191, China; 2 School of Microelectronics, University of Science and Technology, Hefei 230026, China |
|
|
Abstract Recently, β-Ga2O3, an ultra-wide bandgap semiconductor, has shown great potential to be used in power devices blessed with its unique material properties. For instance, the measured average critical field of the vertical Schottky barrier diode (SBD) based on β-Ga2O3 has reached 5.45 MV/cm, and no device in any material has measured a greater before. However, the high electric field of the β-Ga2O3 SBD makes it challenging to manage the electric field distribution and leakage current. Here, we show β-Ga2O3 junction barrier Schottky diode with NiO p-well floating field rings (FFRs). For the central anode, we filled a circular trench array with NiO to reduce the surface field under the Schottky contact between them to reduce the leakage current of the device. For the anode edge, experimental results have demonstrated that the produced NiO/β-Ga2O3 heterojunction FFRs enable the spreading of the depletion region, thereby mitigating the crowding effect of electric fields at the anode edge. Additionally, simulation results indicated that the p-NiO field plate structure designed at the edges of the rings and central anode can further reduce the electric field. This work verified the feasibility of the heterojunction FFRs in β-Ga2O3 devices based on the experimental findings and provided ideas for managing the electric field of β-Ga2O3 SBD.
|
Received: 22 March 2023
Revised: 20 April 2023
Accepted manuscript online: 22 April 2023
|
PACS:
|
85.30.-z
|
(Semiconductor devices)
|
|
85.30.Mn
|
(Junction breakdown and tunneling devices (including resonance tunneling devices))
|
|
85.30.Kk
|
(Junction diodes)
|
|
84.30.Jc
|
(Power electronics; power supply circuits)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.61925110, U20A20207, 62004184, 62004186, and 62234007), the Key-Area Research and Development Program of Guangdong Province (Grant No.2020B010174002), the funding support from University of Science and Technology of China (USTC) (Grant Nos.YD2100002009 and YD2100002010), the Fundamental Research Plan (Grant No.JCKY2020110B010), Collaborative Innovation Program of Hefei Science Center, Chinese Academy of Sciences (Grant No.2022HSC-CIP024), and the Opening Project of and the Key Laboratory of Nanodevices and Applications in Suzhou Institute of Nano-Tech and Nano-Bionics of CAS. This work was partially carried out at the Center for Micro and Nanoscale Research and Fabrication of USTC. The author would like to express gratitude to those who assisted and encouraged during research work, with special appreciation to Prof. Xiaojun Wu and Prof. Liu Ming. |
Corresponding Authors:
Shibing Long
E-mail: shibinglong@ustc.edu.cn
|
Cite this article:
Qiming He(何启鸣), Weibing Hao(郝伟兵), Qiuyan Li(李秋艳), Zhao Han(韩照), Song He(贺松),Qi Liu(刘琦), Xuanze Zhou(周选择), Guangwei Xu(徐光伟), and Shibing Long(龙世兵) β-Ga2O3 junction barrier Schottky diode with NiO p-well floating field rings 2023 Chin. Phys. B 32 128507
|
[1] Reese S B, Remo T, Green J and Zakutayev A 2019 Joule 3 903 [2] Pearton S J, Yang J, IV P H C, Ren F, Kim J, Tadjer M J and Mastro M A 2018 Appl. Phys. Rev. 5 011301 [3] Tsao J Y, Chowdhury S, Hollis M A, et al. 2018 Adv. Electron. Mater. 4 1600501 [4] Higashiwaki M 2021 Phys. Status Solidi-R 15 2100357 [5] Green A J, Speck J, Xing G, et al. 2022 APL Mater. 10 029201 [6] Thieu Q T, Sasaki K and Kuramata A 2023 Jpn. J. Appl. Phys. 62 SF1009 [7] He Q, Zhou X, Li Q, Hao W, Liu Q, Han Z, Zhou K, Chen C, Peng J, Xu G, Zhao X, Wu X and Long S 2022 IEEE Electron Device Lett. 43 1933 [8] Roy S, Bhattacharyya A, Ranga P, Splawn H, Leach J and Krishnamoorthy S 2021 IEEE Electron Device Lett. 42 1140 [9] Allen N, Xiao M, Yan X, Sasaki K, Tadjer M J, Ma J, Zhang R, Wang H and Zhang Y 2019 IEEE Electron Device Lett. 40 1399 [10] Kumar S, Murakami H, Kumagai Y and Higashiwaki M 2022 Appl. Phys. Express 15 054001 [11] Dong P, Zhang J, Yan Q, Liu Z, Ma P, Zhou H and Hao Y 2022 IEEE Electron Device Lett. 43 765 [12] Wang Y, Lv Y, Long S, Zhou X, Song X, Liang S, Han T, Tan X, Feng Z, Cai S and Liu M 2020 IEEE Electron Device Lett. 41 131 [13] Zhou H, Yan Q, Zhang J, Lv Y, Liu Z, Zhang Y, Dang K, Dong P, Feng Z, Feng Q, Ning J, Zhang C, Ma P and Hao Y 2019 IEEE Electron Device Lett. 40 1788 [14] Lu X, Zhang X, Jiang H, Zou X, Lau K M and Wang G 2020 Phys. Status Solidi A 217 1900497 [15] Gao Y, Li A, Feng Q, Hu Z, Feng Z, Zhang K, Lu X, Zhang C, Zhou H, Mu W, Jia Z, Zhang J and Hao Y 2019 Nanoscale Res. Lett. 14 8 [16] Xia X, Xian M, Fares C, Sharma R, Law M E, Ren F and Pearton S J 2021 J. Vac. Sci. Technol. A 39 063405 [17] Lin C H, Yuda Y, Wong M H, Sato M, Takekawa N, Konishi K, Watahiki T, Yamamuka M, Murakami H, Kumagai Y and Higashiwaki M 2019 IEEE Electron Device Lett. 40 1487 [18] Roy S, Bhattacharyya A and Krishnamoorthy S 2020 IEEE Trans. Electron Devices 67 4842 [19] Xiong W, Zhou X, Xu G, He Q, Jian G, Chen C, Yu Y, Hao W, Xiang X, Zhao X, Mu W, Jia Z, Tao X and Long S 2021 IEEE Electron Device Lett. 42 430 [20] Chen H, Wang H and Sheng K 2023 IEEE Electron Device Lett. 44 21 [21] Dhara S, Kalarickal N K, Dheenan A, Joishi C and Rajan S 2022 Appl. Phys. Lett. 121 203501 [22] Hu Z, Lv Y, Zhao C, Feng Q, Feng Z, Dang K, Tian X, Zhang Y, Ning J, Zhou H, Kang X, Zhang J and Hao Y 2020 IEEE Electron Device Lett. 41 441 [23] Wang Y, Gong H, Lv Y, Fu X, Dun S, Han T, Liu H, Zhou X, Liang S, Ye J, Zhang R, Bu A, Cai S and Feng Z 2022 IEEE T. Power Electr. 37 3743 [24] Hao W, Wu F, Li W, Xu G, Xie X, Zhou K, Guo W, Zhou X, He Q, Zhao X, Yang S and Long S 2022 International Electron Devices Meeting (IEDM), December 3--7, 2022, San Francisco, California, United States, p. 9.5.1 [25] Wang B, Xiao M, Spencer J, Qin Y, Sasaki K, Tadjer M J and Zhang Y 2023 IEEE Electron Device Lett. 44 221 [26] Yan Q, Gong H, Zhou H, Zhang J, Ye J, Liu Z, Wang C, Zheng X, Zhang R and Hao Y 2022 Appl. Phys. Lett. 120 092106 [27] Sharma R, Xian M, Law M E, Tadjer M, Ren F and Pearton S J 2020 J. Vac. Sci. Technol. A 38 063414 [28] Gong H H, Yu X X, Xu Y, Chen X H, Kuang Y, Lv Y J, Yang Y, Ren F F, Feng Z H, Gu S L, Zheng Y D, Zhang R and Ye J D 2021 Appl. Phys. Lett. 118 202102 [29] Hu Z, Zhao C, Feng Q, Feng Z, Jia Z, Lian X, Lai Z, Zhang C, Zhou H, Zhang J and Hao Y 2020 ECS J. Solid State Sci. Technol. 9 025001 [30] Li W, Nomoto K, Hu Z, Jena D and Xing H G 2020 IEEE Electron Device Lett. 41 107 [31] Li W, Nomoto K, Hu Z, Jena D and Xing H G 2020 IEEE Trans. Electron Devices 67 3938 [32] Sasaki K, Wakimoto D, Thieu Q T, Koishikawa Y, Kuramata A, Higashiwaki M and Yamakoshi S 2017 IEEE Electron Device Lett. 38 783 [33] Yan Q, Gong H, Zhang J, Ye J, Zhou H, Liu Z, Xu S, Wang C, Hu Z, Feng Q, Ning J, Zhang C, Ma P, Zhang R and Hao Y 2021 Appl. Phys. Lett. 118 122102 [34] Lv Y, Wang Y, Fu X, Dun S, Sun Z, Liu H, Zhou X, Song X, Dang K, Liang S, Zhang J, Zhou H, Feng Z, Cai S and Hao Y 2021 IEEE T. Power Electr. 36 6179 [35] Sasaki K, Yamakoshi S and Kuramata A 2019 Proc. SPIE, February 2--7, 2019, San Francisco, California, United States, p. 1091913 [36] Kokubun Y, Kubo S and Nakagomi S 2016 Appl. Phys. Express 9 091101 [37] Gong H H, Chen X H, Xu Y, Ren F F, Gu S L and Ye J D 2020 Appl. Phys. Lett. 117 022104 [38] Lu X, Zhou X, Jiang H, Ng K W, Chen Z, Pei Y, Lau K M and Wang G 2020 IEEE Electron Device Lett. 41 449 [39] Hao W, He Q, Zhou K, Xu G, Xiong W, Zhou X, Jian G, Chen C, Zhao X and Long S 2021 Appl. Phys. Lett. 118 043501 [40] Li J S, Chiang C C, Xia X, Yoo T J, Ren F, Kim H and Pearton S J 2022 Appl. Phys. Lett. 121 042105 [41] Deng Y, Yang Z, Xu T, Jiang H, Ng K W, Liao C, Su D, Pei Y, Chen Z, Wang G and Lu X 2023 Appl. Surf. Sci. 622 156917 [42] Baliga B J 1984 IEEE Electron Device Lett. 5 194 [43] Baliga B J 1990 Solid State Electron. 33 485 [44] Zhou F, Gong H H, Wang Z P, Xu W Z, Yu X X, Yang Y, Ren F F, Gu S L, Zhang R, Zheng Y D, Lu H and Ye J D 2021 Appl. Phys. Lett. 119 262103 [45] Zhou F, Gong H, Xu W, Yu X, Xu Y, Yang Y, Ren F f, Gu S, Zheng Y, Zhang R, Ye J and Lu H 2022 IEEE T. Power Electr. 37 1223 [46] Mehrotra M and Baliga B J 1995 Solid State Electron. 38 801 [47] Li W, Nomoto K, Pilla M, Pan M, Gao X, Jena D and Xing H G 2017 IEEE Trans. Electron Devices 64 1635 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|